• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Sun Jian, Li Zhanhuai, Zhang Xiao, Wang Huifeng, Zhao Xiaonan. A Statistic-Based Method for Hard-Disk Power Consumption in Storage System[J]. Journal of Computer Research and Development, 2016, 53(7): 1517-1531. DOI: 10.7544/issn1000-1239.2016.20160133
Citation: Sun Jian, Li Zhanhuai, Zhang Xiao, Wang Huifeng, Zhao Xiaonan. A Statistic-Based Method for Hard-Disk Power Consumption in Storage System[J]. Journal of Computer Research and Development, 2016, 53(7): 1517-1531. DOI: 10.7544/issn1000-1239.2016.20160133

A Statistic-Based Method for Hard-Disk Power Consumption in Storage System

More Information
  • Published Date: June 30, 2016
  • Due to the rapid development of big data in the data center, power consumption of storage system is a major issue in today’s datacenters. How to reduce the power consumption of storage systems has become an urgent issue and a hot research topic in the field of computer science. As the hard disk drive is the primary storage medium in today’s storage systems, modeling hard-disk power consumption is attracting more attention in the current state of research. The accurate power consumption model of disk can not only solve the problem of power matching in data center devices, but also estimate the accuracy of energy-efficient solutions. We develop a statistic-based hard-disk power modeling method that estimates the power consumption of storage workloads. The model makes up the weakness of traditional fine-grained model and it is more accurate than the coarse-grained model. In practical applications, it does not need to record the disk internal activities, and does not need to trace complex parameter. Our power estimation results are highly accurate, which means error of 3% and the model is applicable to the synchronous IO and asynchronous IO. Moreover, our model can also be applied to various online storage systems and data center.
  • Related Articles

    [1]Zhang Lu, Cao Feng, Liang Xinyan, Qian Yuhua. Cross-Modal Retrieval with Correlation Feature Propagation[J]. Journal of Computer Research and Development, 2022, 59(9): 1993-2002. DOI: 10.7544/issn1000-1239.20210475
    [2]Yan Mingyu, Li Han, Deng Lei, Hu Xing, Ye Xiaochun, Zhang Zhimin, Fan Dongrui, Xie Yuan. A Survey on Graph Processing Accelerators[J]. Journal of Computer Research and Development, 2021, 58(4): 862-887. DOI: 10.7544/issn1000-1239.2021.20200110
    [3]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [4]Hai Mo, Zhu Jianming. A Propagation Mechanism Combining an Optimal Propagation Path and Incentive in Blockchain Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1205-1218. DOI: 10.7544/issn1000-1239.2019.20180419
    [5]Li Qin, Zhu Yanchao, Liu Yi, Qian Depei. Accelerator Support in YARN Cluster[J]. Journal of Computer Research and Development, 2016, 53(6): 1263-1270. DOI: 10.7544/issn1000-1239.2016.20148351
    [6]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [7]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [8]Wang Yuewu, Jing Jiwu, Xiang Ji, and Liu Qi. Contagion Worm Propagation Simulation and Analysis[J]. Journal of Computer Research and Development, 2008, 45(2): 207-216.
    [9]Li Aiguo, Hong Bingrong, Wang Si, Piao Songhao. Error Propagation Analysis in Software[J]. Journal of Computer Research and Development, 2007, 44(11): 1962-1970.
    [10]Hu Wei and Qin Kaihuai. A New Rendering Technology of GPU-Accelerated Radiosity[J]. Journal of Computer Research and Development, 2005, 42(6): 945-950.
  • Cited by

    Periodical cited type(4)

    1. 刘艳君,牛丽平. 采用改进积分反演法的四旋翼无人机容错控制. 计算机应用与软件. 2022(06): 70-75+95 .
    2. 宋伟中,王行业,王宁. 一种面向无人机区域协同覆盖的感知任务分配方法. 计算机应用与软件. 2021(05): 75-81 .
    3. 马昊鹏,刘由之,李荣军,阎华,杨卫民. 无人机航母系统的构建与应用. 科技创新与应用. 2020(01): 37-40+43 .
    4. 李鹏举,毛鹏军,耿乾,黄传鹏,方骞,张家瑞. 无人机集群技术研究现状与趋势. 航空兵器. 2020(04): 25-32 .

    Other cited types(4)

Catalog

    Article views (1073) PDF downloads (358) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return