• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Rongsheng, Zhang Xinkai, Liu Huadong, Gu Tianlong. Representation and Operations Research of k\+2-MDD in Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2783-2792. DOI: 10.7544/issn1000-1239.2016.20160589
Citation: Dong Rongsheng, Zhang Xinkai, Liu Huadong, Gu Tianlong. Representation and Operations Research of k\+2-MDD in Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2783-2792. DOI: 10.7544/issn1000-1239.2016.20160589

Representation and Operations Research of k\+2-MDD in Large-Scale Graph Data

More Information
  • Published Date: November 30, 2016
  • Efficient and compact representation and operation of graph data which contains hundreds of millions of vertices and edges are the basis of analyzing and processing the large scale of graph data. Aiming at the problem, this paper proposes a representation of large-scale graph data based on the decision diagram, that is k\+2-MDD, providing the initialization of k\+2-MDD and the basic operation such as the edge query, inner(outer) neighbor query, finding out(in)-degree, adding(deleting) edge, etc. The representation method is optimized and improved on the basis of k\+2 tree, and after dividing the adjacency matrix of graph into k\+2, it is stored with the multi valued decision diagram, so as to achieve a more compact storage structure. According to the experimental results of a series of real Web graph and the social network graph data (cnr-2000, dewiki-2013, etc.) derived from the LAW laboratory at the University of Milan, it can be seen that the number of k\+2-MDD’ nodes is only 259%-451% of the k\+2 tree, which achieving the desired effect. According to the experimental results of random graphs, it can be seen that the k\+2-MDD structure is not only suitable for sparse graphs, but also for dense graphs. The graph data of k\+2-MDD shows that both containing the compact and query efficiency representation of k\+2 tree and realizing the efficient operation of the graph model can thus achieve the unity of description and computing power.
  • Related Articles

    [1]Wang Jindi, Tong Xiangrong. Agent Negotiation Model Based on Round Limit Change of Non-Sparse Trust Networks[J]. Journal of Computer Research and Development, 2019, 56(12): 2612-2622. DOI: 10.7544/issn1000-1239.2019.20190163
    [2]Fan Yanfang, Cai Ying. Collaboration Supported Mandatory Access Control Model[J]. Journal of Computer Research and Development, 2015, 52(10): 2411-2421. DOI: 10.7544/issn1000-1239.2015.20150574
    [3]Ge Xin, Zhao Hai, Zhang Jun. Degree Correlation and Its Features of Spreading on Networks[J]. Journal of Computer Research and Development, 2013, 50(4): 741-749.
    [4]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.
    [5]Tong Xiangrong, Huang Houkuan, Zhang Wei. A Case Based Agent Multi-Issue Negotiation Model[J]. Journal of Computer Research and Development, 2009, 46(9): 1508-1514.
    [6]Bian Zheng'ai, Liu Bo, and Luo Junzhou. A Cooperative-Game-Based Mobile Agent Task Collaboration Model in Network Management[J]. Journal of Computer Research and Development, 2007, 44(2): 193-200.
    [7]Tao Haijun, Wang Yadong, Guo Maozu, and Wang Hanlun. A Multi-Agent Negotiation Model Based on Acquaintance Coalition and Extended Contract Net Protocol[J]. Journal of Computer Research and Development, 2006, 43(7): 1155-1160.
    [8]Yang Pei, Gao Yang, Chen Zhaoqian. Persuasive Multi-Agent Multi-Issue Negotiation[J]. Journal of Computer Research and Development, 2006, 43(7): 1149-1154.
    [9]Gao Jian and Zhang Wei. An Accelerating Chaos Evolution Algorithm of Bilateral Multi-Issue Automated Negotiation in MAS[J]. Journal of Computer Research and Development, 2006, 43(6): 1104-1108.
    [10]Zhao Xinpei, Li Mingshu, Chan Keith, Wang Qing. A Negotiation-Based Approach for Software Process Collaboration[J]. Journal of Computer Research and Development, 2006, 43(2): 314-320.
  • Cited by

    Periodical cited type(2)

    1. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    2. 刘波涛,彭长根,吴睿雪,丁红发,谢明明. 面向数字型的轻量级保形加密算法研究. 计算机研究与发展. 2019(07): 1488-1497 . 本站查看

    Other cited types(3)

Catalog

    Article views (1241) PDF downloads (438) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return