• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Xixian, Liu Xianmin, Li Jianzhong, Gao Hong. TMS: An Novel Algorithm for Top-k Queries with Multi-Dimensional Selections on Massive Data[J]. Journal of Computer Research and Development, 2017, 54(3): 570-585. DOI: 10.7544/issn1000-1239.2017.20150615
Citation: Han Xixian, Liu Xianmin, Li Jianzhong, Gao Hong. TMS: An Novel Algorithm for Top-k Queries with Multi-Dimensional Selections on Massive Data[J]. Journal of Computer Research and Development, 2017, 54(3): 570-585. DOI: 10.7544/issn1000-1239.2017.20150615

TMS: An Novel Algorithm for Top-k Queries with Multi-Dimensional Selections on Massive Data

More Information
  • Published Date: February 28, 2017
  • In many applications, top-k query is an important operation to return a set of interesting points among potentially huge data space. Usually, a multi-dimensional selection is specified in top-k query. It is found that the existing algorithms cannot process the query on massive data efficiently. A sorted-list based algorithm TMS (top-k with multi-dimensional selection) is proposed to process top-k query with selection condition on massive data efficiently. TMS employs selection attribute lattice (SAL) of hierarchical structure to distribute tuples and obtains a horizontal partitioning of the table. Each partition is stored in column-oriented model and the lists of ranking attributes are arranged in descending order of attribute values. Given multi-dimensional selection, the relevant lattice cells are determined by SAL and this reduces the number of the retrieved tuples significantly. Double-sorting operation is devised to perform progressive selection evaluation. The efficient pruning is developed to discard the candidates which do not satisfy selection condition or score requirement. The extensive experimental results show that TMS has a significant performance advantage over the existing algorithms.
  • Related Articles

    [1]Liu Le, Guo Shengnan, Jin Xiyuan, Zhao Miaomiao, Chen Ran, Lin Youfang, Wan Huaiyu. Spatial-Temporal Traffic Data Imputation Method with Uncertainty Modeling[J]. Journal of Computer Research and Development, 2025, 62(2): 346-363. DOI: 10.7544/issn1000-1239.202330455
    [2]Xu Xiao, Ding Shifei, Sun Tongfeng, Liao Hongmei. Large-Scale Density Peaks Clustering Algorithm Based on Grid Screening[J]. Journal of Computer Research and Development, 2018, 55(11): 2419-2429. DOI: 10.7544/issn1000-1239.2018.20170227
    [3]Yang Zhuoqun, Jin Zhi. Self-Adaptive Decision Making Under Uncertainty in Environment and Requirements[J]. Journal of Computer Research and Development, 2018, 55(5): 1014-1033. DOI: 10.7544/issn1000-1239.2018.20161039
    [4]Ren Lifang, Wang Wenjian, Xu Hang. Uncertainty-Aware Adaptive Service Composition in Cloud Computing[J]. Journal of Computer Research and Development, 2016, 53(12): 2867-2881. DOI: 10.7544/issn1000-1239.2016.20150078
    [5]Xu Zhengguo, Zheng Hui, He Liang, Yao Jiaqi. Self-Adaptive Clustering Based on Local Density by Descending Search[J]. Journal of Computer Research and Development, 2016, 53(8): 1719-1728. DOI: 10.7544/issn1000-1239.2016.20160136
    [6]Zhang Zhifei, Miao Duoqian, Nie Jianyun, Yue Xiaodong. Sentiment Uncertainty Measure and Classification of Negative Sentences[J]. Journal of Computer Research and Development, 2015, 52(8): 1806-1816. DOI: 10.7544/issn1000-1239.2015.20150253
    [7]Xu Min, Deng Zhaohong, Wang Shitong, Shi Yingzhong. MMCKDE: m-Mixed Clustering Kernel Density Estimation over Data Streams[J]. Journal of Computer Research and Development, 2014, 51(10): 2277-2294. DOI: 10.7544/issn1000-1239.2014.20130718
    [8]Pan Weimin and He Jun. Neuro-Fuzzy System Modeling with Density-Based Clustering[J]. Journal of Computer Research and Development, 2010, 47(11): 1986-1992.
    [9]Yu Canling, Wang Lizhen, and Zhang Yuanwu. An Enhancement Algorithm of Cluster Boundaries Precision Based on Grid's Density Direction[J]. Journal of Computer Research and Development, 2010, 47(5): 815-823.
    [10]Chen Jianmei, Lu Hu, Song Yuqing, Song Shunlin, Xu Jing, Xie Conghua, Ni Weiwei. A Possibility Fuzzy Clustering Algorithm Based on the Uncertainty Membership[J]. Journal of Computer Research and Development, 2008, 45(9): 1486-1492.

Catalog

    Article views (1728) PDF downloads (535) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return