• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Zufan, Wang Lisha, Chen Meiling. Resource Allocation Algorithm Based on D2D Pairs Grouping in TDD System[J]. Journal of Computer Research and Development, 2017, 54(5): 961-968. DOI: 10.7544/issn1000-1239.2017.20151128
Citation: Zhang Zufan, Wang Lisha, Chen Meiling. Resource Allocation Algorithm Based on D2D Pairs Grouping in TDD System[J]. Journal of Computer Research and Development, 2017, 54(5): 961-968. DOI: 10.7544/issn1000-1239.2017.20151128

Resource Allocation Algorithm Based on D2D Pairs Grouping in TDD System

More Information
  • Published Date: April 30, 2017
  • Due to multiple D2D users and one cellular user sharing the same downlink channel resources in TDD systems, an algorithm of resource allocation based on grouping for D2D pairs is proposed to maximize the system throughput, which consists of three parts. This algorithm firstly determines the D2D groups number with the system channels number and the user grouping position centre in terms of the distance among the D2D pairs, and divides the remaining D2D pairs into corresponding groups according to its degree of effect on the communication outage probability of users within the same D2D group. Afterwards, by comparing the interference impact of D2D group on the cellular user, the matching algorithm is used to determine and share the corresponding cellular channel resource for D2D group. Finally, according to the different QOS of cellular users and D2D pairs, the D2D pairs with serious interference are deleted and the D2D pairs sharing the cellular channel resource are finally determined. Simulation results show that more D2D pairs can access to the system and the system throughput is improved by the proposed algorithm.
  • Related Articles

    [1]Fu Liguo, Pang Jianmin, Wang Jun, Zhang Jiahao, Yue Feng. Formal Model of Correctness and Optimization on Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(9): 2001-2011. DOI: 10.7544/issn1000-1239.2019.20180513
    [2]Zhou Zhibin, Wang Guojun, Liu Qin, Jia Weijia. A RFID Anonymous Grouping Proof Protocol Using Dual-Layer Verification[J]. Journal of Computer Research and Development, 2018, 55(12): 2674-2684. DOI: 10.7544/issn1000-1239.2018.20170787
    [3]Fu Yanyan, Zhang Min, Chen Kaiqu, Feng Dengguo. Proofs of Data Possession of Multiple Copies[J]. Journal of Computer Research and Development, 2014, 51(7): 1410-1416.
    [4]Li Tao, Zhang Jingzhong. Machine Proofs in Geometry Based on Complex Number Method[J]. Journal of Computer Research and Development, 2013, 50(9): 1963-1969.
    [5]Ma Yanfang, Zhang Min, Chen Yixiang. Formal Description of Software Dynamic Correctness[J]. Journal of Computer Research and Development, 2013, 50(3): 626-635.
    [6]Wang Yong, Fang Juan, Ren Xingtian, and Lin Li. Formal Verification of TCG Remote Attestation Protocols Based on Process Algebra[J]. Journal of Computer Research and Development, 2013, 50(2): 325-331.
    [7]Wang Changjing. Verifying the Correctness of Loop Optimization Based on Extended Logic Transformation System μTS[J]. Journal of Computer Research and Development, 2012, 49(9): 1863-1873.
    [8]Jing Shuxu, He Fazhi, Cai Xiantao, Cheng Yuan. A Method for Object Reference in Collaborative Modeling System[J]. Journal of Computer Research and Development, 2011, 48(11): 2031-2038.
    [9]Si Tiange, Tan Zhiyong, and Dai Yiqi. A Security Proof Method for Multilevel Security Models[J]. Journal of Computer Research and Development, 2008, 45(10): 1711-1717.
    [10]Wang Guilin, Qing Sihan. Security Notes on Two Cheat-Proof Secret Sharing Schemes[J]. Journal of Computer Research and Development, 2005, 42(11): 1924-1927.

Catalog

    Article views (1270) PDF downloads (556) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return