• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011
Citation: Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011

Knowledge Embedded Bayesian MA Fuzzy System

More Information
  • Published Date: April 30, 2017
  • The most distinctive characteristic of fuzzy system is its high interpretability. But the fuzzy rules obtained by classical cluster based fuzzy systems commonly need to cover all features of input space and often overlap each other. Specially, when facing the high-dimension problem, the fuzzy rules often become more sophisticated because of too much features involved in antecedent parameters. In order to overcome these shortcomings, based on the Bayesian inference framework, knowledge embedded Bayesian Mamdan-Assilan type fuzzy system (KE-B-MA) is proposed by focusing on the Mamdan-Assilan (MA) type fuzzy system. First, the DC (dont care) approach is incorporated into the selection of fuzzy membership centers and features of input space. Second, in order to enhance the classification performance of obtained fuzzy systems, KE-B-MA learns both antecedent and consequent parameter of fuzzy rules simultaneously by a Markov chain Monte Carlo (MCMC) method, and the obtained parameters can be guaranteed to be global optimal solutions. The experimental results on a synthetic dataset and several UCI machine datasets show that the classification accuracy of KE-B-MA is comparable to several classical fuzzy systems with distinctive ability of providing explicit knowledge in the form of interpretable fuzzy rules. Rather than being rivals, fuzziness in KE-B-MA and probability can be well incorporated.
  • Cited by

    Periodical cited type(10)

    1. 李梦云,张景,张换香,张晓琳,刘璐瑶. 基于跨模态语义信息增强的多模态情感分析. 计算机科学与探索. 2024(09): 2476-2486 .
    2. 仲兆满,黄贤波,熊玉龙. 基于混合融合的突发事件多模态情感分析. 江苏海洋大学学报(自然科学版). 2023(01): 1-8 .
    3. 高鑫月,宋沛林,薛润生. 新型冠状病毒肺炎期间公众情感的时空演化分析. 北京测绘. 2022(03): 254-259 .
    4. 刘颖,王哲,房杰,朱婷鸽,李琳娜,刘继明. 基于图文融合的多模态舆情分析. 计算机科学与探索. 2022(06): 1260-1278 .
    5. 孟祥瑞,杨文忠,王婷. 基于图文融合的情感分析研究综述. 计算机应用. 2021(02): 307-317 .
    6. 胡慧君,冯梦媛,曹梦丽,刘茂福. 基于语义相关的多模态社交情感分析. 北京航空航天大学学报. 2021(03): 469-477 .
    7. 章荪,尹春勇. 基于多任务学习的时序多模态情感分析模型. 计算机应用. 2021(06): 1631-1639 .
    8. 蔡国永,储阳阳. 基于双注意力多层特征融合的视觉情感分析. 计算机工程. 2021(09): 227-234 .
    9. 尹魁. 计算机多媒体网络教学发展趋势和方向. 卫星电视与宽带多媒体. 2020(03): 101-102 .
    10. 范瑛. 软件开发活动数据集的层次化及多版本化方法. 信息与电脑(理论版). 2020(10): 73-74 .

    Other cited types(21)

Catalog

    Article views (1069) PDF downloads (724) Cited by(31)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return