• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Yong, Li Feiteng, Wang Yujie. Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR[J]. Journal of Computer Research and Development, 2017, 54(5): 979-985. DOI: 10.7544/issn1000-1239.2017.20160025
Citation: Zhang Yong, Li Feiteng, Wang Yujie. Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR[J]. Journal of Computer Research and Development, 2017, 54(5): 979-985. DOI: 10.7544/issn1000-1239.2017.20160025

Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR

More Information
  • Published Date: April 30, 2017
  • The time-varying received signal strength (RSS) degrades the indoor positioning accuracy in wireless local area network (WLAN). A novel indoor positioning algorithm based on kernel direct discriminant analysis (KDDA) and shuffled frog leaping algorithm and least square support vector regression (SFLA-LSSVR) is proposed to address the problem. Firstly the proposed algorithm employs kernel function strategy to map RSS signal to the field of nonlinear, which is sampled from each access point (AP), and extracts nonlinear features effectively, and reconstructs the positioning information, and discards the redundant positioning features and noise. Secondly, LSSVR algorithm is employed to build the mapping relation model between positioning features and physical locations, and SFLA is employed to optimize the parameters of the relation model, and then test points locations are predicted by using the relation model. Experimental results show that the positioning accuracy of the proposed algorithm is much superior to WKNN, ANN, LSSVR algorithm under the condition of the same sampling numbers, and the number of RSS signal which is sampled from each AP is significantly reduced in the same positioning accuracy, and the proposed algorithm is a WLAN indoor positioning algorithm with good performance.
  • Related Articles

    [1]Wang Yuwei, Liu Min, Ma Cheng, Li Pengfei. High Performance Load Balancing Mechanism for Network Function Virtualization[J]. Journal of Computer Research and Development, 2018, 55(4): 689-703. DOI: 10.7544/issn1000-1239.2018.20170923
    [2]Chen Qi, Chen Zuoning, Jiang Jinhu. MDDS: A Method to Improve the Metadata Performance of Parallel File System for HPC[J]. Journal of Computer Research and Development, 2014, 51(8): 1663-1670. DOI: 10.7544/issn1000-1239.2014.20121094
    [3]Wang Peng, Huang Yan, Li Kun, Guo Youming. Load Balancing Degree First Algorithm on Phase Space for Cloud Computing Cluster[J]. Journal of Computer Research and Development, 2014, 51(5): 1095-1107.
    [4]Shen Zhijun, Zeng Huashen. A Load Balanced Switch Architecture Based on Implicit Flow Splitter[J]. Journal of Computer Research and Development, 2012, 49(6): 1220-1227.
    [5]Liu Xinhua, Li Fangmin, Kuang Hailan, Fang Yilin. An Distributed and Directed Clustering Algorithm Based on Load Balance for Wireless Sensor Network[J]. Journal of Computer Research and Development, 2009, 46(12): 2044-2052.
    [6]Liu Ying, Wang Qirong, Sun Ninghui. Study of Loading Strategy in Shared-Nothing Event Stream Parallel Database Systems[J]. Journal of Computer Research and Development, 2009, 46(1): 159-166.
    [7]Wang Xianghui, Zhang Guoyin, and Xie Xiaoqin. A Load Balance Clustering Algorithm for Multilevel Energy Heterogeneous Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2008, 45(3): 392-399.
    [8]Li Zhenyu, Xie Gaogang. A Load Balancing Algorithm for DHT-Based P2P Systems[J]. Journal of Computer Research and Development, 2006, 43(9): 1579-1585.
    [9]Tian Junfeng, Liu Yuling, and Du Ruizhong. Research of a Load Balancing Model Based on Mobile Agent[J]. Journal of Computer Research and Development, 2006, 43(9): 1571-1578.
    [10]Zhang Xiangquan, Guo Wei. A Bidirectional Path Re-Selection Based Load-Balanced Routing Protocol for Ad-Hoc Networks[J]. Journal of Computer Research and Development, 2006, 43(2): 218-223.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return