• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Meng, Zhu Fuxi. An Audience Targeting Algorithm Based on Neighbor Choosing Strategy[J]. Journal of Computer Research and Development, 2017, 54(7): 1465-1476. DOI: 10.7544/issn1000-1239.2017.20160360
Citation: Zhou Meng, Zhu Fuxi. An Audience Targeting Algorithm Based on Neighbor Choosing Strategy[J]. Journal of Computer Research and Development, 2017, 54(7): 1465-1476. DOI: 10.7544/issn1000-1239.2017.20160360

An Audience Targeting Algorithm Based on Neighbor Choosing Strategy

More Information
  • Published Date: June 30, 2017
  • Audience targeting which is designed to discover the prospective target users by analyzing the these seed users’ behavior is an important technology in the online advertising recommendation systems, and the existing audience targeting technologies mostly rely on collaborative filtering algorithms. However, the traditional collaborative filtering algorithms have the disadvantages of lower precision and weaker anti-attack capability. In order to solve the problems, an audience targeting algorithm based on neighbor choosing strategy is proposed. Firstly, the users which have the similar behavior with the seed audiences are chosen dynamically by means of the user behavior similarity. Then, on the basis of the users’ feature and behavior, the neighbors of each seed user are chosen from the behavior similar audiences by the user similarity, and all the neighbors are considered to be the candidate audiences. Finally, the prospective audiences are chosen from the candidate users by the audience targeting algorithm based on neighbor choosing strategy, so as to complete the task of audience targeting. Compared with the existing methods, the experimental results on real-world advertisement datasets show that the audience targeting algorithm not only improves the precision, but enhances the anti-attack capability as well.
  • Related Articles

    [1]Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
    [2]Xu Xiao, Ding Shifei, Sun Tongfeng, Liao Hongmei. Large-Scale Density Peaks Clustering Algorithm Based on Grid Screening[J]. Journal of Computer Research and Development, 2018, 55(11): 2419-2429. DOI: 10.7544/issn1000-1239.2018.20170227
    [3]Sun Yong, Tan Wenan, Jin Ting, Zhou Liangguang. A Collaborative Collusion Detection Method Based on Online Clustering[J]. Journal of Computer Research and Development, 2018, 55(6): 1320-1332. DOI: 10.7544/issn1000-1239.2018.20170231
    [4]Xu Kai, Wu Xiaojun, Yin Hefeng. Distributed Low Rank Representation-Based Subspace Clustering Algorithm[J]. Journal of Computer Research and Development, 2016, 53(7): 1605-1611. DOI: 10.7544/issn1000-1239.2016.20148362
    [5]Zhang Shuai, Li Tao, Jiao Xiaofan, Wang Yifeng, Yang Yulu. Parallel TNN Spectral Clustering Algorithm in CPU-GPU Heterogeneous Computing Environment[J]. Journal of Computer Research and Development, 2015, 52(11): 2555-2567. DOI: 10.7544/issn1000-1239.2015.20148151
    [6]Zhu Hong, Ding Shifei, Xu Xinzheng. An AP Clustering Algorithm of Fine-Grain Parallelism Based on Improved Attribute Reduction[J]. Journal of Computer Research and Development, 2012, 49(12): 2638-2644.
    [7]Lu Weiming, Du Chenyang, Wei Baogang, Shen Chunhui, and Ye Zhenchao. Distributed Affinity Propagation Clustering Based on MapReduce[J]. Journal of Computer Research and Development, 2012, 49(8): 1762-1772.
    [8]Li Wenjun, Wang Jianxin, and Chen Jianer. An Improved Parameterized Algorithm for Hyperplane-Cover Problem[J]. Journal of Computer Research and Development, 2012, 49(4): 804-811.
    [9]Luo Xiaonan, Lin Mouguang, Ji Changbo, and Li Zhiyong. A Progressive Geometry Simplification Method for Mobile Computing Terminal[J]. Journal of Computer Research and Development, 2007, 44(6): 1038-1043.
    [10]Ou Xinliang, Chen Songqiao, Chang Zhiming. A Parallel Geometric Correction Algorithm Based on Dynamic Division-Point Computing[J]. Journal of Computer Research and Development, 2006, 43(6): 1115-1121.

Catalog

    Article views (1225) PDF downloads (541) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return