• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Longyang, Dong Yihong, Yan Yuliang, Chen Huahui, Qian Jiangbo. A Sampling Algorithm Based on Frequent Edges in Single Large-Scale Graph Under Spark[J]. Journal of Computer Research and Development, 2017, 54(9): 1966-1978. DOI: 10.7544/issn1000-1239.2017.20160546
Citation: Li Longyang, Dong Yihong, Yan Yuliang, Chen Huahui, Qian Jiangbo. A Sampling Algorithm Based on Frequent Edges in Single Large-Scale Graph Under Spark[J]. Journal of Computer Research and Development, 2017, 54(9): 1966-1978. DOI: 10.7544/issn1000-1239.2017.20160546

A Sampling Algorithm Based on Frequent Edges in Single Large-Scale Graph Under Spark

More Information
  • Published Date: August 31, 2017
  • With the popularity of social networks, the demand for its frequent subgraph mining becomes more intense. With the arrival of the era of big data, social networks have been expanding and frequent subgraph mining becomes increasingly difficult. In fact, it does not require to mine frequent subgraphs exactly in application, so sampling methods are adopted to improve the efficiency of mining frequent subgraphs under certain accuracy. Most existing sampling algorithms are not fit for frequent subgraph mining because they use vertex transfer or compute the topology of the original graph first which will take a lot of time. In this paper, we propose a new sampling algorithm named DIMSARI (distributed Monte Carlo sampling algorithm based on random jump and graph induction) based on frequent edge, and it runs on a distributed framework named Spark. This algorithm is created on the basis of the Monte Carlo algorithm meanwhile adding random jump. The results are added by subgraph induction step to promote the accuracy of the algorithm and prove that the algorithm is unbiased. The experiments show that the accuracy of frequent subgraph mining using DIMSARI algorithm has been greatly improved and at the same time the proposed algorithm only spends a little more time than other algorithms. The apex of sampling at different sampling rates after subgraphs has maintained a lower normalized mean square error.
  • Related Articles

    [1]He Renhua, Li Bing, Du Yibo, Wang Ying, Li Xiaowei, Han Yinhe. A Survey on Algorithm and Hardware Optimization to LWE-Based Fully Homomorphic Encryption[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202331022
    [2]Bai Lifang, Zhu Yuefei, Li Yongjun, Wang Shuai, Yang Xiaoqi. Research Progress of Fully Homomorphic Encryption[J]. Journal of Computer Research and Development, 2024, 61(12): 3069-3087. DOI: 10.7544/issn1000-1239.202221052
    [3]Zhao Xiufeng, Fu Yu, Song Weitao. Circular Secure Homomorphic Encryption Scheme[J]. Journal of Computer Research and Development, 2020, 57(10): 2117-2124. DOI: 10.7544/issn1000-1239.2020.20200422
    [4]Xu Ming, Fan Yimeng, Jiang Changjun. Time-Varying Underwater Acoustic Channel Based Physical Layer Secret Key Generation Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2660-2670. DOI: 10.7544/issn1000-1239.2019.20190040
    [5]Ye Qing, Hu Mingxing, Tang Yongli, Liu Kun, Yan Xixi. Efficient Hierarchical Identity-Based Encryption Scheme from Learning with Errors[J]. Journal of Computer Research and Development, 2017, 54(10): 2193-2204. DOI: 10.7544/issn1000-1239.2017.20170394
    [6]Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431
    [7]Fu Wei, Wu Xiaoping, Ye Qing, Xiao Nong, Lu Xicheng. A Multiple Replica Possession Proving Scheme Based on Public Key Partition[J]. Journal of Computer Research and Development, 2015, 52(7): 1672-1681. DOI: 10.7544/issn1000-1239.2015.20140353
    [8]Liu Mingjie, Wang An. Fully Homomorphic Encryption and Its Applications[J]. Journal of Computer Research and Development, 2014, 51(12): 2593-2603. DOI: 10.7544/issn1000-1239.2014.20131168
    [9]Yang Xiaoyuan, Cai Weiyi, Chen Haibin. Multiple-Authority-Key Functional Encryption: A M-KP-ABE Scheme Based on LMSSS[J]. Journal of Computer Research and Development, 2011, 48(8): 1363-1369.
    [10]Tian Junfeng, Jiao Hongqiang, Li Ning, and Liu Tao. Double Secret Keys and Double Random Numbers Authentication Scheme[J]. Journal of Computer Research and Development, 2008, 45(5): 779-785.
  • Cited by

    Periodical cited type(4)

    1. 张黎,骆春山,谢委员,李蓓蓓. 基于分支混淆算法的隐私数据库自适应加密方法. 计算机与现代化. 2022(03): 43-47 .
    2. 赵武清,王甜,耿新. 基于同态加密的电力业务数据安全研究. 微型电脑应用. 2021(06): 113-116 .
    3. 韩舒艳,努尔买买提·黑力力. 选择性隐藏树型访问结构的CP-ABE方案. 计算机工程. 2020(07): 150-158 .
    4. 刘建华,郑晓坤,郑东,敖章衡. 基于属性加密且支持密文检索的安全云存储系统. 信息网络安全. 2019(07): 50-58 .

    Other cited types(0)

Catalog

    Article views (1265) PDF downloads (843) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return