• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Xuan, Fang Hechuan, Chang Liqiong, Wang Ju, Chen Xiaojiang, Fang Dingyi, Peng Yao, Chen Feng. Research on Key Technologies of RFID based Device Free Gesture Recognition[J]. Journal of Computer Research and Development, 2017, 54(12): 2752-2760. DOI: 10.7544/issn1000-1239.2017.20160648
Citation: Wang Xuan, Fang Hechuan, Chang Liqiong, Wang Ju, Chen Xiaojiang, Fang Dingyi, Peng Yao, Chen Feng. Research on Key Technologies of RFID based Device Free Gesture Recognition[J]. Journal of Computer Research and Development, 2017, 54(12): 2752-2760. DOI: 10.7544/issn1000-1239.2017.20160648

Research on Key Technologies of RFID based Device Free Gesture Recognition

More Information
  • Published Date: November 30, 2017
  • As a vital component of human-computer interaction, gesture recognition has gained a lot of attentions in civilian applications recently. Many applications would benefit from such gesture recognition, e.g. smart phone, smart home system, Kinect, etc. In this work, we introduce an RFID (radio frequency identification) based solution to recognize gestures using COTS (commercial off-the-shelf) RFID tags and readers. The basic idea is treating signal features caused by perturbation of gestures as the fingerprint. Furthermore, we leverage multipath to increase the difficulty of matching, which provides a high recognition rate. Unlike past work, which required user to attach an RFID tag, our method does not require any device to be attached to users. Specifically, we solve the problem that RFID communication is discontinuous in time domain by data slicing. We then capture and extract characteristic matrix corresponding to each gesture by using a synthetic aperture radar (SAR). Finally, we adopt dynamic time warping (DTW) techniques to recognize gestures by matching with the priori gesture fingerprint database. We implement our method using a COTS RFID device and evaluate it with 6 commercial tags. Experimental results demonstrate that this device free method is feasible and it can achieve a correct recognition rate of about 85%.
  • Related Articles

    [1]Wang Yuanzheng, Sun Wenxiang, Fan Yixing, Liao Huaming, Guo Jiafeng. A Cross-Modal Entity Linking Model Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2025, 62(3): 662-671. DOI: 10.7544/issn1000-1239.202330731
    [2]Huang Hua, Bu Yifan, Xu Hongli, Wang Xiaorong. Point Cloud Segmentation Algorithm Based on Contrastive Learning and Label Mining[J]. Journal of Computer Research and Development, 2025, 62(1): 132-143. DOI: 10.7544/issn1000-1239.202330491
    [3]Yin Yuyu, Wu Guangqiang, Li Youhuizi, Wang Xinyu, Gao Honghao. A Machine Unlearning Method via Feature Constraint and Adaptive Loss Balance[J]. Journal of Computer Research and Development, 2024, 61(10): 2649-2661. DOI: 10.7544/issn1000-1239.202440476
    [4]Zhao Rongmei, Sun Siyu, Yan Fanli, Peng Jian, Ju Shenggen. Multi-Interest Aware Sequential Recommender System Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2024, 61(7): 1730-1740. DOI: 10.7544/issn1000-1239.202330622
    [5]Jiao Pengfei, Liu Huan, Lü Le, Gao Mengzhou, Zhang Jilin, Liu Dong. Globally Enhanced Heterogeneous Temporal Graph Neural Networks Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2023, 60(8): 1808-1821. DOI: 10.7544/issn1000-1239.202330226
    [6]Zhao Lei, Zhang Huiming, Xing Wei, Lin Zhijie, Lin Huaizhong, Lu Dongming, Pan Xun, Xu Duanqing. Image Cross-Domain Translation Algorithm Based on Self-Similarity and Contrastive Learning[J]. Journal of Computer Research and Development, 2023, 60(4): 930-946. DOI: 10.7544/issn1000-1239.202220039
    [7]Lu Shaoshuai, Chen Long, Lu Guangyue, Guan Ziyu, Xie Fei. Weakly-Supervised Contrastive Learning Framework for Few-Shot Sentiment Classification Tasks[J]. Journal of Computer Research and Development, 2022, 59(9): 2003-2014. DOI: 10.7544/issn1000-1239.20210699
    [8]Zhang Lingling, Chen Yiwei, Wu Wenjun, Wei Bifan, Luo Xuan, Chang Xiaojun, Liu Jun. Interpretable Few-Shot Learning with Contrastive Constraint[J]. Journal of Computer Research and Development, 2021, 58(12): 2573-2584. DOI: 10.7544/issn1000-1239.2021.20210999
    [9]Wang Jina, Chen Junhua, Gao Jianhua. ECC Multi-Label Code Smell Detection Method Based on Ranking Loss[J]. Journal of Computer Research and Development, 2021, 58(1): 178-188. DOI: 10.7544/issn1000-1239.2021.20190836
    [10]Xie Wenda, Qiu Junhong, and Wang Lei. A Practical and Efficient Contrast Enhancement Method[J]. Journal of Computer Research and Development, 2013, 50(4): 787-799.

Catalog

    Article views (1549) PDF downloads (534) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return