• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liang Bin, Liu Quan, Xu Jin, Zhou Qian, Zhang Peng. Aspect-Based Sentiment Analysis Based on Multi-Attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. DOI: 10.7544/issn1000-1239.2017.20170178
Citation: Liang Bin, Liu Quan, Xu Jin, Zhou Qian, Zhang Peng. Aspect-Based Sentiment Analysis Based on Multi-Attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. DOI: 10.7544/issn1000-1239.2017.20170178

Aspect-Based Sentiment Analysis Based on Multi-Attention CNN

More Information
  • Published Date: July 31, 2017
  • Unlike general sentiment analysis, aspect-based sentiment classification aims to infer the sentiment polarity of a sentence depending not only on the context but also on the aspect. For example, in sentence “The food was very good, but the service at that restaurant was dreadful”, for aspect “food”, the sentiment polarity is positive while the sentiment polarity of aspect “service” is negative. Even in the same sentence, sentiment polarity could be absolutely opposite when focusing on different aspects, so we need to infer the sentiment polarities of different aspects correctly. The attention mechanism is a good way for aspect-based sentiment classification. In current research, however, the attention mechanism is more combined with RNN or LSTM networks. Such neural network-based architectures generally rely on complex structures and cannot parallelize over the words of a sentence. To address the above problems, this paper proposes a multi-attention convolutional neural networks (MATT-CNN) for aspect-based sentiment classification. This approach can capture deeper level sentiment information and distinguish sentiment polarity of different aspects explicitly through a multi-attention mechanism without using any external parsing results. Experiments on the SemEval2014 and Automotive-domain datasets show that, our approach achieves better performance than traditional CNN, attention-based CNN and attention-based LSTM.
  • Related Articles

    [1]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [2]Zhang Mi, Pan Xudong, Yang Min. JADE-DB:A Universal Testing Benchmark for Large Language Model Safety Based on Targeted Mutation[J]. Journal of Computer Research and Development, 2024, 61(5): 1113-1127. DOI: 10.7544/issn1000-1239.202330959
    [3]Shu Wentao, Li Ruixiao, Sun Tianxiang, Huang Xuanjing, Qiu Xipeng. Large Language Models: Principles, Implementation, and Progress[J]. Journal of Computer Research and Development, 2024, 61(2): 351-361. DOI: 10.7544/issn1000-1239.202330303
    [4]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [5]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [6]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [7]Pan Xudong, Zhang Mi, Yan Yifan, Lu Yifan, Yang Min. Evaluating Privacy Risks of Deep Learning Based General-Purpose Language Models[J]. Journal of Computer Research and Development, 2021, 58(5): 1092-1105. DOI: 10.7544/issn1000-1239.2021.20200908
    [8]Su Jindian, Ouyang Zhifan, Yu Shanshan. Aspect-Level Sentiment Classification for Sentences Based on Dependency Tree and Distance Attention[J]. Journal of Computer Research and Development, 2019, 56(8): 1731-1745. DOI: 10.7544/issn1000-1239.2019.20190102
    [9]Chen Ke, Liang Bin, Ke Wende, Xu Bo, Zeng Guochao. Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(5): 945-957. DOI: 10.7544/issn1000-1239.2018.20170049
    [10]Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.

Catalog

    Article views (4010) PDF downloads (2553) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return