• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xia Zhuoqun, Hu Zhenzhen, Luo Junpeng, Chen Yueyue. Adaptive Trajectory Prediction for Moving Objects in Uncertain Environment[J]. Journal of Computer Research and Development, 2017, 54(11): 2434-2444. DOI: 10.7544/issn1000-1239.2017.20170309
Citation: Xia Zhuoqun, Hu Zhenzhen, Luo Junpeng, Chen Yueyue. Adaptive Trajectory Prediction for Moving Objects in Uncertain Environment[J]. Journal of Computer Research and Development, 2017, 54(11): 2434-2444. DOI: 10.7544/issn1000-1239.2017.20170309

Adaptive Trajectory Prediction for Moving Objects in Uncertain Environment

More Information
  • Published Date: October 31, 2017
  • The existing methods for trajectory prediction are difficult to describe the trajectory of moving objects in complex and uncertain environment accurately. In order to solve this problem, this paper proposes an self-adaptive trajectory prediction method for moving objects based on variation Gaussian mixture model (VGMM) in dynamic environment (ESATP). Firstly, based on the traditional mixture Gaussian model, we use the approximate variational Bayesian inference method to process the mixture Gaussian distribution in model training procedure. Secondly, variational Bayesian expectation maximization iterative is used to learn the model parameters and prior information is used to get a more precise prediction model. This algorithm can take a priory information. Finally, for the input trajectories, parameter adaptive selection algorithm is used automatically to adjust the combination of parameters, including the number of Gaussian mixture components and the length of segment. Experimental results perform that the ESATP method in the experiment shows high predictive accuracy, and maintains a high time efficiency. This model can be used in products of mobile vehicle positioning.

Catalog

    Article views (1324) PDF downloads (845) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return