• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Geng Fenghuan, Liu Hui, Guo Qiang, Yin Yilong. Variational Optical Flow Estimation Based Super-Resolution Reconstruction for Lung 4D-CT Image[J]. Journal of Computer Research and Development, 2017, 54(8): 1703-1712. DOI: 10.7544/issn1000-1239.2017.20170346
Citation: Geng Fenghuan, Liu Hui, Guo Qiang, Yin Yilong. Variational Optical Flow Estimation Based Super-Resolution Reconstruction for Lung 4D-CT Image[J]. Journal of Computer Research and Development, 2017, 54(8): 1703-1712. DOI: 10.7544/issn1000-1239.2017.20170346

Variational Optical Flow Estimation Based Super-Resolution Reconstruction for Lung 4D-CT Image

More Information
  • Published Date: July 31, 2017
  • The acquisition of lung 4D computed tomography (4D-CT) data is limited by the scanning time and radiation dose, which leads to the sampling rate in the axial direction is much less than that in the in-plane direction. In order to get better quality of 4D-CT images, based on the inherent self-similarity of medical images, a new method of image sequence super-resolution reconstruction is proposed in this paper. This method uses the local and global variational optical flow estimation to improve the quality of enlarged 4D-CT image. Firstly, we present a combined local and global variational optical flow model, in order to estimate the motion fields (i.e., the optical flow fields) between different phases in the corresponding positions. Then, the optical flow field is obtained by solving the model with the fast alternating direction method of multiplier. Finally, according to the calculated motion fields, we employ the improved non-local iterative back projection (NLIBP) algorithm to reconstruct high resolution lung images. The experimental results have shown that, in both quantification standard and visual perception, this method outperforms non-local iterative back projection algorithm and full search block matching based iterative back projection technique. Furthermore, our method can generate clear edges while enhancing the texture of images.
  • Related Articles

    [1]Sun Qingxiao, Yang Hailong. Generalized Stencil Auto-Tuning Framework on GPU Platform[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440612
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Zhang Shuai, Li Tao, Jiao Xiaofan, Wang Yifeng, Yang Yulu. Parallel TNN Spectral Clustering Algorithm in CPU-GPU Heterogeneous Computing Environment[J]. Journal of Computer Research and Development, 2015, 52(11): 2555-2567. DOI: 10.7544/issn1000-1239.2015.20148151
    [4]Luo Xinyuan, Chen Gang, Wu Sai. A GPU-Accelerated Highly Compact and Encoding Based Database System[J]. Journal of Computer Research and Development, 2015, 52(2): 362-376. DOI: 10.7544/issn1000-1239.2015.20140254
    [5]Tang Liang, Luo Zuying, Zhao Guoxing, and Yang Xu. SOR-Based P/G Solving Algorithm of Linear Parallelism for GPU Computing[J]. Journal of Computer Research and Development, 2013, 50(7): 1491-1500.
    [6]Cai Yong, Li Guangyao, and Wang Hu. Parallel Computing of Central Difference Explicit Finite Element Based on GPU General Computing Platform[J]. Journal of Computer Research and Development, 2013, 50(2): 412-419.
    [7]Wang Zhuowei, Xu Xianbin, Zhao Wuqing, He Shuibing, Zhang Yuping. Parallel Acceleration and Performance Optimization for GRAPES Model Based on GPU[J]. Journal of Computer Research and Development, 2013, 50(2): 401-411.
    [8]Wu Xiaoxiao, Liang Xiaohui, Xu Qidi, and Zhao Qinping. An Algorithm of Physically-based Scalar-fields Guided Deformation on GPU[J]. Journal of Computer Research and Development, 2010, 47(11): 1857-1864.
    [9]Wang Jing, Wang Lili, and Li Shuai. Pre-Computed Radiance Transport All-Frequency Shadows Algorithm on GPU[J]. Journal of Computer Research and Development, 2006, 43(9): 1505-1510.
    [10]Hu Wei and Qin Kaihuai. A New Rendering Technology of GPU-Accelerated Radiosity[J]. Journal of Computer Research and Development, 2005, 42(6): 945-950.

Catalog

    Article views (1371) PDF downloads (685) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return