• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ma Chao, Dai Zibin, Li Wei, Nan Longmei, Jin Yu. RPRU: A Unified Architecture for Rotation and Bit-Extraction Operations in General-Propose Processor[J]. Journal of Computer Research and Development, 2018, 55(2): 426-437. DOI: 10.7544/issn1000-1239.2018.20160775
Citation: Ma Chao, Dai Zibin, Li Wei, Nan Longmei, Jin Yu. RPRU: A Unified Architecture for Rotation and Bit-Extraction Operations in General-Propose Processor[J]. Journal of Computer Research and Development, 2018, 55(2): 426-437. DOI: 10.7544/issn1000-1239.2018.20160775

RPRU: A Unified Architecture for Rotation and Bit-Extraction Operations in General-Propose Processor

More Information
  • Published Date: January 31, 2018
  • Parallel bit extraction and rotation-shift operations can be completed by bit level permutation. At present, they are mainly implemented independently, which results in the waste of hardware logic resources. Although some of the researches unified the two operations into a single hardware unit, it was required to design two dedicated circuits to implement the routing algorithms for each operation. Consequently, the consumption of the logic resources is still high. To solve this problem, a unified routing algorithm is proposed by studying the mapping principle of rotation-shift and parallel bit extraction operations based on one kind of dynamic multistage interconnect network named Inverse Butterfly Network. The algorithm utilizes the self-routing and recursive characteristics of the network. It not only has high parallelism, but also is simple in hardware implementation, which is conductive to integration for the general-propose processor architecture. On this basis, we also develop a reconfigurable parallel bit extraction hardware unit with rotation-shift function named RPRU, and optimize the critical path of the unit. Then, we synthesize it into CMOS 90nm process. The experimental results show that the area of our RPRU using the unified algorithm is less by 30% than that of the previous design with identical functions.
  • Related Articles

    [1]Zheng Fang, Shen Li, Li Hongliang, Xie Xianghui. Lightweight Error Recovery Techniques of Many-Core Processor in High Performance Computing[J]. Journal of Computer Research and Development, 2015, 52(6): 1316-1328. DOI: 10.7544/issn1000-1239.2015.20150119
    [2]Xiong Huanliang, Zeng Guosun, Wu Canghai. A Novel Scalability Metric for Parallel Computing[J]. Journal of Computer Research and Development, 2014, 51(11): 2547-2558. DOI: 10.7544/issn1000-1239.2014.20130750
    [3]Zhang Aiqing, Mo Zeyao, Yang Zhang. Three-Level Hierarchical Software Architecture for Data-Driven Parallel Computing with Applications[J]. Journal of Computer Research and Development, 2014, 51(11): 2538-2546. DOI: 10.7544/issn1000-1239.2014.20131241
    [4]Chen Qi, Chen Zuoning, Jiang Jinhu. MDDS: A Method to Improve the Metadata Performance of Parallel File System for HPC[J]. Journal of Computer Research and Development, 2014, 51(8): 1663-1670. DOI: 10.7544/issn1000-1239.2014.20121094
    [5]Cai Yong, Li Guangyao, and Wang Hu. Parallel Computing of Central Difference Explicit Finite Element Based on GPU General Computing Platform[J]. Journal of Computer Research and Development, 2013, 50(2): 412-419.
    [6]Zhang Shihui, Kong Lingfu, and Feng Liang. An Improved Hestenes SVD Method and Its Parallel Computing and Application in Parallel Robot[J]. Journal of Computer Research and Development, 2008, 45(4): 716-724.
    [7]Tu Bibo, Hong Xuehai, Zhan Jianfeng, Fan Jianping. Workflow-Based User Environment for High Performance Computing[J]. Journal of Computer Research and Development, 2007, 44(10): 1717-1723.
    [8]Wu Xiangjun, Jin Zhiyan, Chen Dehui, Song Junqiang, Yang Xuesheng. A Parallel Computing Algorithm and Its Application in New Generation of Numerical Weather Prediction System (GRAPES)[J]. Journal of Computer Research and Development, 2007, 44(3).
    [9]Liu Jie, Chi Lihua, Hu Qingfeng, Li Xiaomei. An Improved TFQMR Algorithm for Large Linear Systems Suited to Parallel Computing[J]. Journal of Computer Research and Development, 2005, 42(7): 1235-1240.
    [10]Feng Shengzhong, Tan Guangming, Xu Lin, Sun Ninghui, Xu Zhiwei. Research on the High Performance Algorithms of Dawning 4000H Bioinformatics Specific Machine[J]. Journal of Computer Research and Development, 2005, 42(6): 1053-1058.

Catalog

    Article views (1181) PDF downloads (458) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return