• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Xiaojian, Jin Kaizhong, Meng Xiaofeng. Private Spatial Decomposition with Adaptive Grid[J]. Journal of Computer Research and Development, 2018, 55(6): 1143-1156. DOI: 10.7544/issn1000-1239.2018.20160963
Citation: Zhang Xiaojian, Jin Kaizhong, Meng Xiaofeng. Private Spatial Decomposition with Adaptive Grid[J]. Journal of Computer Research and Development, 2018, 55(6): 1143-1156. DOI: 10.7544/issn1000-1239.2018.20160963

Private Spatial Decomposition with Adaptive Grid

More Information
  • Published Date: May 31, 2018
  • Grid-based differentially private spatial decomposition has attracted considerable research attention in recent years. The trade-off among the size of spatial data, data skew, and Laplace noise directly constrains the accuracy of decomposition. Most state-of-the-art methods based on grid cannot efficiently accommodate the three constraints. To address the above questions, this paper proposes a three-layer adaptive grid, called STAG, to decompose the spatial data with differential privacy. STAG employs Bernoulli random sampling method to retrieve the samples as decomposition data in the second level. According to the different query granularities in the second level, some cells whose counts are smaller than the given threshold will be filtered by exponential mechanism and high-pass filter techniques. For the cells whose counts are over the threshold, STAG uses Down-Split method to decompose them into fine-grained cells in the third level. For the filtered cells, STAG utilizes Up-Merge method to group them into coarse-grained cells with optimal grouping skill in the first level. STAG method is compared with the existing methods such as UG, AG, Kd-Stand, and Kd-Hybrid on the large-scale real datasets. The experimental results show that the STAG outperforms its competitors, achieves the accurate decomposition and results of range query.
  • Related Articles

    [1]Lu Sidi, He Yuankai, Shi Weisong. Vehicle Computing: An Emerging Computing Paradigm for the Autonomous Driving Era[J]. Journal of Computer Research and Development, 2025, 62(1): 2-21. DOI: 10.7544/issn1000-1239.202440538
    [2]Chen Xiao, Huang Muhong, Tian Yifan, Wang Yan, Cao Sheng, Zhang Xiaosong. Internet of Vehicles Data Sharing Scheme via Blockchain Sharding[J]. Journal of Computer Research and Development, 2024, 61(9): 2246-2260. DOI: 10.7544/issn1000-1239.202330899
    [3]Le Junqing, Tan Zhouyong, Zhang Di, Liu Gao, Xiang Tao, Liao Xiaofeng. Secure and Efficient Federated Learning for Continuous IoV Data Sharing[J]. Journal of Computer Research and Development, 2024, 61(9): 2199-2212. DOI: 10.7544/issn1000-1239.202330894
    [4]Tang Xiaolan, Liang Yuting, Chen Wenlong. Multi-Stage Federated Learning Mechanism with non-IID Data in Internet of Vehicles[J]. Journal of Computer Research and Development, 2024, 61(9): 2170-2184. DOI: 10.7544/issn1000-1239.202330885
    [5]Kuang Boyu, Li Yuze, Gu Fangming, Su Mang, Fu Anmin. Review of Internet of Vehicle Security Research: Threats, Countermeasures, and Future Prospects[J]. Journal of Computer Research and Development, 2023, 60(10): 2304-2321. DOI: 10.7544/issn1000-1239.202330464
    [6]Zheng Yingying, Zhou Junlong, Shen Yufan, Cong Peijin, Wu Zebin. Time and Energy-Sensitive End-Edge-Cloud Resource Provisioning Optimization Method for Collaborative Vehicle-Road Systems[J]. Journal of Computer Research and Development, 2023, 60(5): 1037-1052. DOI: 10.7544/issn1000-1239.202220734
    [7]Han Mu, Yang Chen, Hua Lei, Liu Shuai, Ma Shidian. Vehicle Pseudonym Management Scheme in Internet of Vehicles for Mobile Edge Computing[J]. Journal of Computer Research and Development, 2022, 59(4): 781-795. DOI: 10.7544/issn1000-1239.20200620
    [8]Yao Hailong, Yan Qiao. Cryptanalysis and Design of Anonymous Authentication Protocol for Value-Added Services in Internet of Vehicles[J]. Journal of Computer Research and Development, 2022, 59(2): 440-451. DOI: 10.7544/issn1000-1239.20200487
    [9]Hou Wanyu, Sun Yu, Li Dawei, Cui Jian, Guan Zhenyu, Liu Jianwei. Anonymous Authentication and Key Agreement Protocol for 5G-V2V Based on PUF[J]. Journal of Computer Research and Development, 2021, 58(10): 2265-2277. DOI: 10.7544/issn1000-1239.2021.20210486
    [10]Zhou Huan, Xu Shouzhi, and Li Chengxia. A V2V Broadcast Protocol for Chain Collision Avoidance on Highways[J]. Journal of Computer Research and Development, 2009, 46(12): 2062-2067.
  • Cited by

    Periodical cited type(9)

    1. 方海泉,邓明明. 具有自主学习与记忆功能的智能政务问答系统研究. 电子技术应用. 2024(01): 21-26 .
    2. 曹策,陈焰,周兰江. 基于深度学习和文本情感的上市公司财务舞弊识别方法. 计算机工程与应用. 2024(04): 338-346 .
    3. 胡菊香,吕学强,游新冬,周建设. 聚类标注和多粒度特征融合的基金新闻分类. 小型微型计算机系统. 2024(02): 257-264 .
    4. 王润周,张新生,王明虎. 融合动态掩码注意力与多教师多特征知识蒸馏的文本分类. 中文信息学报. 2024(03): 113-129 .
    5. 康雷,张瑜. 基于文本挖掘的俄罗斯羽绒服消费需求. 现代纺织技术. 2024(08): 108-116 .
    6. 文益民,员喆,余航. 一种新的半监督归纳迁移学习框架:Co-Transfer. 计算机研究与发展. 2023(07): 1603-1614 . 本站查看
    7. 丁晓蔚,季婧,赵笑宇,王本强,丁毅杰,王献东. 互联网金融安全情绪感知及风险预警应用研究——基于BERT所作的探索. 情报杂志. 2023(09): 57-70 .
    8. 毕鑫,聂豪杰,赵相国,袁野,王国仁. 面向知识图谱约束问答的强化学习推理技术. 软件学报. 2023(10): 4565-4583 .
    9. 胡丹. 金融学文本大数据挖掘方法分析. 互联网周刊. 2022(09): 12-14 .

    Other cited types(17)

Catalog

    Article views (1500) PDF downloads (666) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return