• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Hailong, Yun Xiaochun, Han Zhishuai. Weibo Popularity Prediction Method Based on Propagation Acceleration[J]. Journal of Computer Research and Development, 2018, 55(6): 1282-1293. DOI: 10.7544/issn1000-1239.2018.20161057
Citation: Zhu Hailong, Yun Xiaochun, Han Zhishuai. Weibo Popularity Prediction Method Based on Propagation Acceleration[J]. Journal of Computer Research and Development, 2018, 55(6): 1282-1293. DOI: 10.7544/issn1000-1239.2018.20161057

Weibo Popularity Prediction Method Based on Propagation Acceleration

More Information
  • Published Date: May 31, 2018
  • Weibo popularity prediction attempts to forecast the future diffusion range of Weibo messages based on the propagation features at early stages. The existing methods are mainly depended on messages’ early popularity, ignoring the propagation trend at that time, which leads to poor predicting accuracy when these methods applied on Weibo messages. For the purpose of forecasting the Weibo popularity more accurately and conveniently, we propose a multiple linear regression model: UAPA (user activity propagation acceleration) in this paper. Firstly, we investigate the relationship between future popularity and varying trend of Weibo diffusion, and find that they are positive correlation. Based on this detection, we present the concept of propagation acceleration which describes the spreading varying speed of Weibo, then we build a predicting model based on propagation acceleration and popularity at early stages. Furthermore, we analyze the Weibo user periodic activity and find that the retweeting times of users vary greatly at different time in one day, and the messages’ popularity and propagation acceleration are also distinct at various moments. In the light of this finding, we optimize the predicting model by user activity. Finally, we compare prediction accuracy of UAPA model mentioned above with representative popularity prediction methods on two real datasets, with 1000 thousands and 410 thousands messages respectively, and discuss the influence of parameter value in UAPA model on prediction performance. Experiments show that UAPA model is superior to the existing methods on multiple indicators.
  • Related Articles

    [1]Zhang Lu, Cao Feng, Liang Xinyan, Qian Yuhua. Cross-Modal Retrieval with Correlation Feature Propagation[J]. Journal of Computer Research and Development, 2022, 59(9): 1993-2002. DOI: 10.7544/issn1000-1239.20210475
    [2]Yan Mingyu, Li Han, Deng Lei, Hu Xing, Ye Xiaochun, Zhang Zhimin, Fan Dongrui, Xie Yuan. A Survey on Graph Processing Accelerators[J]. Journal of Computer Research and Development, 2021, 58(4): 862-887. DOI: 10.7544/issn1000-1239.2021.20200110
    [3]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [4]Hai Mo, Zhu Jianming. A Propagation Mechanism Combining an Optimal Propagation Path and Incentive in Blockchain Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1205-1218. DOI: 10.7544/issn1000-1239.2019.20180419
    [5]Li Qin, Zhu Yanchao, Liu Yi, Qian Depei. Accelerator Support in YARN Cluster[J]. Journal of Computer Research and Development, 2016, 53(6): 1263-1270. DOI: 10.7544/issn1000-1239.2016.20148351
    [6]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [7]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [8]Wang Yuewu, Jing Jiwu, Xiang Ji, and Liu Qi. Contagion Worm Propagation Simulation and Analysis[J]. Journal of Computer Research and Development, 2008, 45(2): 207-216.
    [9]Li Aiguo, Hong Bingrong, Wang Si, Piao Songhao. Error Propagation Analysis in Software[J]. Journal of Computer Research and Development, 2007, 44(11): 1962-1970.
    [10]Hu Wei and Qin Kaihuai. A New Rendering Technology of GPU-Accelerated Radiosity[J]. Journal of Computer Research and Development, 2005, 42(6): 945-950.
  • Cited by

    Periodical cited type(15)

    1. 李妍,何洪波,王闰强. 微博热度预测研究综述. 数据与计算发展前沿. 2023(02): 119-135 .
    2. 胡俊睿,邹海涛,郑尚,于化龙,高尚. 基于传播特征的微博流行度预测算法研究. 计算机与数字工程. 2023(04): 763-768+964 .
    3. 谢柏林 ,黎琦 ,邝建 . 基于隐半马尔可夫模型的微博流行信息检测方法. 计算机科学. 2022(S1): 291-296 .
    4. 解伟凡,郭岩,匡广生,余智华,薛源海,沈华伟. 基于演化模式的推特话题流行度预测方法. 计算机应用. 2022(11): 3364-3370 .
    5. 曹婍,沈华伟,高金华,程学旗. 基于深度学习的流行度预测研究综述. 中文信息学报. 2021(02): 1-18+32 .
    6. 张雷,李琳,陈鸿龙,Daniel Bovensiepen. 一种面向工业边缘计算应用的缓存替换算法. 计算机研究与发展. 2021(07): 1533-1543 . 本站查看
    7. 桂思思,孙伟,徐晓锋. 基于ARIMA与线性回归组合模型的汽车销量预测分析. 计算机与数字工程. 2021(08): 1719-1723 .
    8. 凌美君,辛婧. 基于LDA模型的高校教育云平台设计与研究. 计算机技术与发展. 2021(12): 135-140 .
    9. 段淑凤,朱立谷. 基于去噪自编码器的微博传播流行度演化研究. 中国传媒大学学报(自然科学版). 2020(01): 24-29 .
    10. 王世杰,周丽华,孔兵,周俊华. 基于LDA-DeepHawkes模型的信息级联预测. 计算机科学与探索. 2020(03): 410-425 .
    11. 艾擎,张凤荔,陈学勤,邓一娇. 在线社交网络信息流行度预测综述. 计算机应用研究. 2020(S1): 1-5 .
    12. 刘超,姚耿,杨宏雨. 基于微博关注网络的转发预测算法研究. 数字技术与应用. 2020(07): 121-124 .
    13. 方元武,何雪. 基于混合模型的内容资源流行度预测算法. 微型电脑应用. 2020(12): 123-126 .
    14. 王晓萌,方滨兴,张宏莉,王星. TSL:基于连接强度的Facebook消息流行度预测模型. 通信学报. 2019(10): 1-9 .
    15. 王哲,刘贵容,彭润亚. 基于大数据分析方法的微博热点建模与预测. 现代电子技术. 2019(21): 73-76 .

    Other cited types(20)

Catalog

    Article views (1327) PDF downloads (633) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return