• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ren Gang, Deng Pan, Yang Chao, Wu Changmao. MapReduce Back Propagation Algorithm Based on Structure Parallelism[J]. Journal of Computer Research and Development, 2018, 55(6): 1308-1319. DOI: 10.7544/issn1000-1239.2018.20170024
Citation: Ren Gang, Deng Pan, Yang Chao, Wu Changmao. MapReduce Back Propagation Algorithm Based on Structure Parallelism[J]. Journal of Computer Research and Development, 2018, 55(6): 1308-1319. DOI: 10.7544/issn1000-1239.2018.20170024

MapReduce Back Propagation Algorithm Based on Structure Parallelism

More Information
  • Published Date: May 31, 2018
  • Back propagation (BP) algorithm is a widely used learning algorithm that is used for training multiple layer neural networks. BP algorithm based on Hadoop cluster and MapReduce parallel programming model (MRBP) shows good performance on processing big data problems. However, it lacks the capability of fine-grained parallelism. Thus, when confronted with high dimension data and neural networks with large nodes, the performance is low relatively. On the other hand, since the users can’t control the communication of Hadoop computing nodes, the existing structure parallel scheme based on clusters can’t be directly applied to MRBP algorithm. This paper proposes a structure parallelism based MRBP algorithm (SP-MRBP), which adopts layer-wise parallelism, layer-wise ensemble (LPLE) strategy to implement structure parallel computing. Also, we derive the analytical expressions of the proposed SP-MRBP algorithm and the classic MRBP algorithm, and obtain the time differences between the both algorithms as well as the optimal number of parallel structures of SP-MRBP algorithm. To the best knowledge of the authors, it is the first time to introduce the structure parallelism scheme to the MRBP algorithm. The experimental results show that, compared with the classic MRBP algorithm, our algorithm has better performance on processing efficiency when facing large neural networks.
  • Related Articles

    [1]Fu Hao, Long Chun, Gong Liangyi, Wei Jinxia, Huang Pan, Lin Yanzhong, Sun Degang. Malicious Domain Detection Technology Based on Semantic Graph Learning[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440375
    [2]Liu Qixu, Liu Jiaxi, Jin Ze, Liu Xinyu, Xiao Juxin, Chen Yanhui, Zhu Hongwen, Tan Yaokang. Survey of Artificial Intelligence Based IoT Malware Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2234-2254. DOI: 10.7544/issn1000-1239.202330450
    [3]Pan Jianwen, Cui Zhanqi, Lin Gaoyi, Chen Xiang, Zheng Liwei. A Review of Static Detection Methods for Android Malicious Application[J]. Journal of Computer Research and Development, 2023, 60(8): 1875-1894. DOI: 10.7544/issn1000-1239.202220297
    [4]Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
    [5]Yang Zheng, Yin Qilei, Li Haoran, Miao Yuanli, Yuan Dong, Wang Qian, Shen Chao, Li Qi. Study of Wechat Sybil Detection[J]. Journal of Computer Research and Development, 2021, 58(11): 2319-2332. DOI: 10.7544/issn1000-1239.2021.20210461
    [6]Yang Wang, Gao Mingzhe, Jiang Ting. A Malicious Code Static Detection Framework Based on Multi-Feature Ensemble Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912
    [7]Wang Jialai, Zhang Chao, Qi Xuyan, Rong Yi. A Survey of Intelligent Malware Detection on Windows Platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964
    [8]Wang Lina, Tan Cheng, Yu Rongwei, Yin Zhengguang. The Malware Detection Based on Data Breach Actions[J]. Journal of Computer Research and Development, 2017, 54(7): 1537-1548. DOI: 10.7544/issn1000-1239.2017.20160436
    [9]Li Peng, Wang Ruchuan, Wu Ning. Research on Unknown Malicious Code Automatic Detection Based on Space Relevance Features[J]. Journal of Computer Research and Development, 2012, 49(5): 949-957.
    [10]Dai Hua, Qin Xiaolin, and Bai Chuanjie. A Malicious Transaction Detection Method Based on Transaction Template[J]. Journal of Computer Research and Development, 2010, 47(5): 921-929.

Catalog

    Article views (1176) PDF downloads (514) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return