• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Zihao, Zhang Bin, Zhu Ning, Tang Huilin. Adaptive App-DDoS Detection Method Based on Improved AP Algorithm[J]. Journal of Computer Research and Development, 2018, 55(6): 1236-1246. DOI: 10.7544/issn1000-1239.2018.20170124
Citation: Liu Zihao, Zhang Bin, Zhu Ning, Tang Huilin. Adaptive App-DDoS Detection Method Based on Improved AP Algorithm[J]. Journal of Computer Research and Development, 2018, 55(6): 1236-1246. DOI: 10.7544/issn1000-1239.2018.20170124

Adaptive App-DDoS Detection Method Based on Improved AP Algorithm

More Information
  • Published Date: May 31, 2018
  • As it is complicated for training samples and difficult for updating models in behavior-based application layer DDoS detection methods, an adaptive App-DDoS detection method based on improved affinity propagation (IAP) algorithm is proposed. Firstly, to optimize the affinity propagation algorithm, we previously divide the dataset into several parts utilizing the limited priori knowledge, and merge the similar clusters for enhancing the ability of processing large amount of data. Besides, the abnormal clusters cleaning mechanism is introduced so as to avoid their interference for the detection results. Secondly, some user behavior attributes are given to represent behavior features, and the improved AP algorithm is applied to efficiently clustering the proposed attributes, as a result, improving the detection rate for abnormal users. Then by evaluating the quality of clusters with Silhouette index in real-time, a self-updating learning mechanism is put forward to support the resistance of analyzing the distribution of normal users’ attributions, which further reduces the false positive rate and increases the detection rate. The experimental results on real dataset, ClerkNet-Http, show that the proposed method is more effective and more accurate compared with the conventional AP algorithm and KMPCA algorithm, as well as can update clusters by itself in the process of detection.
  • Cited by

    Periodical cited type(11)

    1. 戴俭,唐勇,张婷婷,李云天,许云飞,张卫丰. 基于RF-SVM的应用层DDoS攻击检测方法. 软件导刊. 2023(03): 62-67 .
    2. 周奕涛,张斌,刘自豪. 基于多模态深度神经网络的应用层DDoS攻击检测模型. 电子学报. 2022(02): 508-512 .
    3. 万校基,李海林,龚燕燕,林海龙. 基于天际线算法的主题排序方法研究. 情报学报. 2022(04): 388-400 .
    4. 潘雨婷,林莉. 云环境下一种基于信任的加密流量DDoS发现方法. 计算机研究与发展. 2021(04): 822-833 . 本站查看
    5. 李萌. 基于智能进化算法的DDoS攻击检测防御研究. 计算技术与自动化. 2021(02): 110-117 .
    6. 康重,赵恭震. 基于人工智能的DDoS攻击检测方法研究进展. 信息通信技术. 2021(06): 61-65+84 .
    7. 张志强,刘三满,曹敏. 基于行为分析的DDoS攻击源追踪技术研究. 山西警察学院学报. 2020(01): 120-123 .
    8. 张京隆. DDOS攻击检测方法综述. 科技经济导刊. 2020(12): 17-18 .
    9. 邹臣嵩,段桂芹,欧阳明星,刘锋. 基于改进近邻传播算法的聚类质量评价模型. 西南师范大学学报(自然科学版). 2020(06): 97-106 .
    10. 孙暖,曹小平,刘军. 一种基于AP的三支聚类改进算法. 四川职业技术学院学报. 2020(06): 150-155 .
    11. 张武,张嫚嫚,洪汛,江朝晖,蒋跃林. 基于近邻传播算法的茶园土壤墒情传感器布局优化. 农业工程学报. 2019(06): 107-113 .

    Other cited types(8)

Catalog

    Article views (1070) PDF downloads (590) Cited by(19)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return