• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Zhao, Miao Duoqian, Ren Fuji, Zhang Hongyun. Rough Set Knowledge Discovery Based Open Domain Chinese Question Answering Retrieval[J]. Journal of Computer Research and Development, 2018, 55(5): 958-967. DOI: 10.7544/issn1000-1239.2018.20170232
Citation: Han Zhao, Miao Duoqian, Ren Fuji, Zhang Hongyun. Rough Set Knowledge Discovery Based Open Domain Chinese Question Answering Retrieval[J]. Journal of Computer Research and Development, 2018, 55(5): 958-967. DOI: 10.7544/issn1000-1239.2018.20170232

Rough Set Knowledge Discovery Based Open Domain Chinese Question Answering Retrieval

More Information
  • Published Date: April 30, 2018
  • In the information retrieval (IR) based open domain question answering system (QA system), the main principle is that first use the semantic tools and knowledgebase to get the semantic and knowledge information, then calculate the matching value of both semantic and knowledge. However, in some practical applications of Chinese question answering, because of the uncertainty of both the Chinese language representation and the Chinese knowledge representation, the current methods are not very effective. To solve this problem, a rough set knowledge discovery based Chinese question answering method is proposed in this paper. It uses the method of rough set equivalence partitioning to represent the rough set knowledge of the QA pairs, then uses the idea of attribute reduction to mine out the upper approximation representations of all the knowledge items. Based on the rough set QA knowledgebase, the knowledge match value of a QA pair can be calculated as a kind of knowledge item similarity. After all the knowledge similarities of one question and its answer candidates are given, the final matching values which combines rough set knowledge similarity with traditional sentence similarity can be used to rank the answer candidates. The experiment shows that the proposed method can improve the MAP and MRR compared with the baseline information retrieval methods.
  • Cited by

    Periodical cited type(7)

    1. 张创邦,王青海. 二元论域知识粒的分解性研究. 模糊系统与数学. 2024(01): 113-130 .
    2. 王敬前,张小红. 基于极大相容块的不完备信息处理新方法及其应用. 南京大学学报(自然科学). 2022(01): 82-93 .
    3. 孙洪溥,耿强. 基于二维条码的数字化档案信息自动检索系统设计. 现代电子技术. 2021(10): 65-68 .
    4. 蒲巧. 双向交互机器人的语言自动生成仿真. 计算机仿真. 2019(04): 310-314 .
    5. 康海燕,王紫豪,于爱民,谭雨轩. 基于网络日志的用户行为刻画与预测研究. 郑州大学学报(理学版). 2019(03): 48-54+60 .
    6. 杨辰,刘婷婷,刘雷,牛奔,孙见山. 融合语义和社交特征的电子文献资源推荐方法研究. 情报学报. 2019(06): 632-640 .
    7. 刘继明,谭云丹,袁野. 基于平滑逆频率和依存句法的句子相似度计算方法. 科学技术与工程. 2019(20): 278-282 .

    Other cited types(19)

Catalog

    Article views (1291) PDF downloads (613) Cited by(26)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return