• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Shuai, Fu Anmin, Su Mang, Chen Zhenzhu, Sun Yinxia. Secure and Verifiable Protocol for Outsourcing Group Power Exponent to a Single Server[J]. Journal of Computer Research and Development, 2018, 55(11): 2482-2489. DOI: 10.7544/issn1000-1239.2018.20170420
Citation: Li Shuai, Fu Anmin, Su Mang, Chen Zhenzhu, Sun Yinxia. Secure and Verifiable Protocol for Outsourcing Group Power Exponent to a Single Server[J]. Journal of Computer Research and Development, 2018, 55(11): 2482-2489. DOI: 10.7544/issn1000-1239.2018.20170420

Secure and Verifiable Protocol for Outsourcing Group Power Exponent to a Single Server

More Information
  • Published Date: October 31, 2018
  • With the rapid development of cloud computing and the arrival of large data age, users are confronted with huge data and information to be processed which means massive amounts of difficult tasks. Consequently, how to securely outsource some time-consuming computing tasks to an untrusted public cloud server has aroused widespread concern. To realize the data privacy protection and the verifiability of calculation results in outsourcing computing, based on the single server model, this paper proposes a new privacy-preserving protocol for outsourcing power exponent on a group field, called GEXP(outsourcing power exponent on a group field). The scheme can prevent adversaries from getting any input/output data. Moreover, it effectively avoids the collusion attack in the dual server model. Compared with the existing schemes, GEXP can detect the wrong result returned by the cloud server with 100% probability, which ensures that the user can fully verify the result of outsourcing calculation. The formal security analysis and experiments indicate that our scheme is to protect privacy and highly efficient. In experiments, we compare our scheme with other state-of-the-art schemes to further demonstrate the superiorities in security and efficiency. In addition, in order to prove the practicality of our scheme, this paper gives the specific application of GEXP in cloud storage data integrity verification.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1193) PDF downloads (472) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return