• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jia Xibin, Jin Ya, Chen Juncheng. Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2018, 55(11): 2439-2451. DOI: 10.7544/issn1000-1239.2018.20170496
Citation: Jia Xibin, Jin Ya, Chen Juncheng. Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2018, 55(11): 2439-2451. DOI: 10.7544/issn1000-1239.2018.20170496

Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification

More Information
  • Published Date: October 31, 2018
  • Plenty and well labeled training samples are significant foundation to make sure the good performance of supervising learning, whereas there is a problem of high labor-cost and time-consuming in the samples. Furthermore, it is not always feasible to get the plenty of well-labeled sample data in every application to support the classification training. Meanwhile, directly employing the trained model from the source domain to the target domain normally causes the problem of accuracy degradation, due to the information distribution discrepancy between the source domain and the target domain. Aiming to solve the above problems, we propose an algorithm named domain alignment based on multi-viewpoint domain-shared feature for cross-domain sentiment classification (DAMF). Firstly, we fuse three sentiment lexicons to eliminate the polarity divergence of domain-shared feature words that are chosen by mutual information value. On this basis, we extract the word pairs that have the same sentiment polarity in the same domain by utilizing four syntax rules and the word pairs that have strong association relation in the same domain by utilizing association rules algorithm. Then, we use the domain-shared words that have no polarity divergence as a bridge to establish an indirect mapping relationship between domain-specific words in different domains. By constructing the unified feature representation space of different domains, the domain alignment is achieved. Meanwhile, the experiments on four public data sets from Amazon product reviews corpora show the effectiveness of our proposed algorithm on cross-domain sentiment classification.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [3]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [4]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [5]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [6]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [7]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [8]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [9]Fang Weiwei, Ren Jiang, Xia Hongke. Heterogeneous Distributed Linear Regression Privacy-Preserving Modeling[J]. Journal of Computer Research and Development, 2011, 48(9): 1685-1692.
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.
  • Cited by

    Periodical cited type(25)

    1. 张世文,陈双,梁伟,李仁发. 联邦学习中的攻击手段与防御机制研究综述. 计算机工程与应用. 2024(05): 1-16 .
    2. 刘炜,刘宇昭,唐琮轲,王媛媛,佘维,田钊. 基于区块链的联邦蒸馏数据共享模型研究. 计算机科学. 2024(03): 39-47 .
    3. 汤凌韬,陈左宁,张鲁飞,吴东. 联邦学习中的隐私问题研究进展. 软件学报. 2023(01): 197-229 .
    4. 金源,李成智. 智能财务背景下的财务信息安全研究. 财会通讯. 2023(07): 136-144 .
    5. 先兴平,吴涛,乔少杰,吴渝,刘宴兵. 图学习隐私与安全问题研究综述. 计算机学报. 2023(06): 1184-1212 .
    6. 李功源,刘博涵,杨雨豪,邵栋. 可信人工智能系统的质量属性与实现:三级研究. 软件学报. 2023(09): 3941-3965 .
    7. 王守欣,彭长根,刘海,谭伟杰,张弘. 基于联邦学习的PATE教师模型聚合优化方法. 计算机与数字工程. 2023(11): 2608-2614 .
    8. 崔争艳,刘晨晨,孙滨. 基于机器学习的MOOC学习者弃学预测与预警系统实现. 信息与电脑(理论版). 2022(01): 65-67 .
    9. 王坤庆,刘婧,李晨,赵语杭,吕浩然,李鹏,刘炳莹. 联邦学习安全威胁综述. 信息安全研究. 2022(03): 223-234 .
    10. 陈玉明,董建威. 基于粒计算的非线性感知机. 数据采集与处理. 2022(03): 566-575 .
    11. 田枫,冯建臣,刘芳. 改进YOLOv4的油田作业现场烟火检测. 计算机系统应用. 2022(06): 300-306 .
    12. 宁晗阳,马苗,杨波,刘士昌. 密码学智能化研究进展与分析. 计算机科学. 2022(09): 288-296 .
    13. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    14. 黄精武. 基于差分隐私的联邦学习数据隐私安全技术. 通信技术. 2022(12): 1618-1625 .
    15. 黄志强. 基于随机化防御的云应用安全体系技术研究. 电子设计工程. 2021(02): 150-154 .
    16. 赵俊杰,王金伟. 基于SmsGAN的对抗样本修复. 郑州大学学报(工学版). 2021(01): 50-55 .
    17. 张颖君,陈恺,周赓,吕培卓,刘勇,黄亮. 神经网络水印技术研究进展. 计算机研究与发展. 2021(05): 964-976 . 本站查看
    18. 拓世英,孙浩,林子涵,陈进. 多模态图像智能目标识别对抗攻击. 国防科技. 2021(02): 8-13 .
    19. 张宇,李海良. 基于RSA的图像可识别对抗攻击方法. 网络与信息安全学报. 2021(05): 40-48 .
    20. 黄静琪,贾西平,陈道鑫,柏柯嘉,廖秀秀. 基于双对抗机制的图像攻击算法. 计算机工程. 2021(11): 150-157 .
    21. 孙爽,李晓会,刘妍,张兴. 不同场景的联邦学习安全与隐私保护研究综述. 计算机应用研究. 2021(12): 3527-3534 .
    22. 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版). 2020(04): 9-17 .
    23. 李德权,许月,薛生. 基于动态约束自适应方法抵御高维鞍点攻击. 计算机研究与发展. 2020(09): 2001-2008 . 本站查看
    24. 魏立斐,陈聪聪,张蕾,李梦思,陈玉娇,王勤. 机器学习的安全问题及隐私保护. 计算机研究与发展. 2020(10): 2066-2085 . 本站查看
    25. 宋雪亚,王传安. 文本信息分词处理下的智能家电离线语音识别. 自动化与仪器仪表. 2020(12): 161-164 .

    Other cited types(50)

Catalog

    Article views (1239) PDF downloads (541) Cited by(75)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return