• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jiang Tao, Li Zhanhuai. A Survey on Local Pattern Mining in Gene Expression Data[J]. Journal of Computer Research and Development, 2018, 55(11): 2343-2360. DOI: 10.7544/issn1000-1239.2018.20170629
Citation: Jiang Tao, Li Zhanhuai. A Survey on Local Pattern Mining in Gene Expression Data[J]. Journal of Computer Research and Development, 2018, 55(11): 2343-2360. DOI: 10.7544/issn1000-1239.2018.20170629

A Survey on Local Pattern Mining in Gene Expression Data

More Information
  • Published Date: October 31, 2018
  • As an unprecedented breakthrough in experimental molecular biology domain, DNA microarray enables simultaneously monitoring of the expression level of thousands of genes over many experimental conditions. Studies have shown that analyzing microarray data is essential for finding gene co-expression network, designing new types of drugs, preventing disease, and so on. To analyze gene expression datasets, the researchers design many clustering methods, which can only find fewer of useful knowledge. Due to a subset of genes co-regulate and co-express only under a subset of experimental conditions, and also not co-express at the same level, they can belong to several genetic pathways that are not apparent. In this situation, the biclustering method is proposed. At the same time, the direction of gene expression analysis changes from the whole pattern mining to the local pattern discovery, and then it changes the situation of clustering data only based on all the objects or attributes of the data. The paper introduces the state-of-the-art progress, which includes the definition of local pattern, the types and criteria of local pattern, mining and query methods of local pattern. Then it concludes the mining criteria based on quantity and quality, and related software. Further, it gives the problems in the existing algorithms and tools. Finally, we discuss the research direction in the future.
  • Related Articles

    [1]Miao Dongjing, Liu Xianmin, Li Jianzhong. An Algorithm on Mining Approximate Functional Dependencies in Probabilistic Database[J]. Journal of Computer Research and Development, 2015, 52(12): 2857-2865. DOI: 10.7544/issn1000-1239.2015.20140685
    [2]Wang Yuanzhuo, Jia Yantao, Liu Dawei, Jin Xiaolong, Cheng Xueqi. Open Web Knowledge Aided Information Search and Data Mining[J]. Journal of Computer Research and Development, 2015, 52(2): 456-474. DOI: 10.7544/issn1000-1239.2015.20131342
    [3]Ding Zhaoyun, Jia Yan, Zhou Bin. Survey of Data Mining for Microblogs[J]. Journal of Computer Research and Development, 2014, 51(4): 691-706.
    [4]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [5]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [6]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [7]Hu Wenyu, Sun Zhihui, Wu Yingjie. Study of Sampling Methods on Data Mining and Stream Mining[J]. Journal of Computer Research and Development, 2011, 48(1): 45-54.
    [8]Yang Bei, Huang Houkuan. Mining Top-K Significant Itemsets in Landmark Windows over Data Streams[J]. Journal of Computer Research and Development, 2010, 47(3): 463-473.
    [9]Yan Leiming, Sun Zhihui, Wu Yingjie, and Zhang Baili. Biclustering Nonlinearly Correlated Time Series Gene Expression Data[J]. Journal of Computer Research and Development, 2008, 45(11): 1865-1873.
    [10]Yang Bingru, Gao Jing, and Song Wei. Application Research of Cognitive Physics in Data Mining[J]. Journal of Computer Research and Development, 2006, 43(8): 1432-1438.

Catalog

    Article views (1670) PDF downloads (626) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return