• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Guo Yanchao, Gao Ling, Wang Hai, Zheng Jie, Ren Jie. Power Optimization Based on Dynamic Content Refresh in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 563-571. DOI: 10.7544/issn1000-1239.2018.20170716
Citation: Guo Yanchao, Gao Ling, Wang Hai, Zheng Jie, Ren Jie. Power Optimization Based on Dynamic Content Refresh in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 563-571. DOI: 10.7544/issn1000-1239.2018.20170716

Power Optimization Based on Dynamic Content Refresh in Mobile Edge Computing

More Information
  • Published Date: February 28, 2018
  • Nowadays, with the rapid development of mobile Internet and related technologies, social applications have become one of the mainstream applications. At the same time, the functions of mobile applications are also getting richer and richer, and their energy consumption requirements and information processing capabilities are also growing. In view of the problem of high energy consumption and computing power caused by mobile social platforms ignoring network status and frequently refreshing content (words, pictures, videos, etc.), a consumption optimization model based on Markov decision process (MDP) in edge computing is proposed. The model considers the network status in different environments and performs data processing through the local edge computing layer (simulating the local edge computing mode and completing data processing) according to the current power of the mobile phone and the user refresh rate. It selects optimal strategy from the decision tables generated by the Markov decision process, and dynamically selects the best network access and refreshes the best download picture format. The model not only reduces refresh time, but also reduces the power consumption of the mobile platform. The experimental results show that compared with the picture refresh mode using a single network, the energy consumption optimization model proposed in this paper reduces the energy consumption by about 12.1% without reducing the number of user refresh cycles.
  • Related Articles

    [1]Li Xiaowei, Chen Benhui, Yang Dengqi, Wu Gaofei. Review of Security Protocols in Edge Computing Environments[J]. Journal of Computer Research and Development, 2022, 59(4): 765-780. DOI: 10.7544/issn1000-1239.20210644
    [2]Zhang Lei, Li Lin, Chen Honglong, Daniel Bovensiepen. A Cache Replacement Algorithm for Industrial Edge Computing Application[J]. Journal of Computer Research and Development, 2021, 58(7): 1533-1543. DOI: 10.7544/issn1000-1239.2021.20200672
    [3]Lu Xiaofeng, Liao Yuying, Pietro Lio, Pan Hui. An Asynchronous Federated Learning Mechanism for Edge Network Computing[J]. Journal of Computer Research and Development, 2020, 57(12): 2571-2582. DOI: 10.7544/issn1000-1239.2020.20190754
    [4]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [5]Huang Qianyi, Li Zhiyang, Xie Wentao, Zhang Qian. Edge Computing in Smart Homes[J]. Journal of Computer Research and Development, 2020, 57(9): 1800-1809. DOI: 10.7544/issn1000-1239.2020.20200253
    [6]Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
    [7]Ning Zhenyu, Zhang Fengwei, Shi Weisong. A Study of Using TEE on Edge Computing[J]. Journal of Computer Research and Development, 2019, 56(7): 1441-1453. DOI: 10.7544/issn1000-1239.2019.20180522
    [8]Shi Weisong, Zhang Xingzhou, Wang Yifan, Zhang Qingyang. Edge Computing: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89. DOI: 10.7544/issn1000-1239.2019.20180760
    [9]Zhao Ziming, Liu Fang, Cai Zhiping, Xiao Nong. Edge Computing: Platforms, Applications and Challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337. DOI: 10.7544/issn1000-1239.2018.20170228
    [10]Shi Weisong, Sun Hui, Cao Jie, Zhang Quan, Liu Wei. Edge Computing—An Emerging Computing Model for the Internet of Everything Era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. DOI: 10.7544/issn1000-1239.2017.20160941
  • Cited by

    Periodical cited type(10)

    1. 林德铭,林姿琼,郑艺峰,杨敬民,张文杰. 移动边缘计算中资源供给不确定下的最优投资和定价问题. 南京大学学报(自然科学). 2024(03): 416-428 .
    2. 谢虎,陈志伟,郭文鑫,赵瑞锋,刘洋. 基于边缘计算的电动汽车换电电池冗余度建模分析. 计量学报. 2023(05): 758-764 .
    3. 谢虎,陈志伟,郭文鑫,赵瑞锋,刘洋. 基于边缘计算的电动汽车换电电池冗余度建模分析. 电源学报. 2023(04): 159-166 .
    4. 邹璐珊,黄晓雯,杨敬民,郑艺峰,张光林,张文杰. 移动边缘计算中资源分配和定价方法综述. 电信科学. 2022(03): 113-132 .
    5. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 .
    6. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
    7. 张恩硕. 面向城轨视频监控的边缘计算系统时延与能耗优化算法. 铁路通信信号工程技术. 2020(09): 56-62+88 .
    8. 田珂,徐岚,牛晓霞. 基于互联网的电费缴费系统的设计与研究. 微型电脑应用. 2019(06): 89-93 .
    9. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 .
    10. 虞湘宾,王光英,许方铖. 未来移动通信网络中移动边缘计算技术. 南京航空航天大学学报. 2018(05): 586-594 .

    Other cited types(15)

Catalog

    Article views (1403) PDF downloads (808) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return