• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Yongquan, Li Dongsheng. Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey[J]. Journal of Computer Research and Development, 2018, 55(3): 512-523. DOI: 10.7544/issn1000-1239.2018.20170793
Citation: Fu Yongquan, Li Dongsheng. Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey[J]. Journal of Computer Research and Development, 2018, 55(3): 512-523. DOI: 10.7544/issn1000-1239.2018.20170793

Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey

More Information
  • Published Date: February 28, 2018
  • The technical advancements of Internet, mobile computing and Internet of things (IoT) have been pushing the deep integration of human, machine and things, which fostered a lot of end-users oriented network search, online social networks, economical business, video surveillance and intelligent assistant tools, which are typically referred to as online data-intensive applications. These new applications are of large scale and sensitive to the service quality, requiring stringent latency performance. However, end-user requests traverse heterogeneous environments including edge network, wide-area network and the data center, which naturally incurs a long-tail latency issue that significantly degrades users’ experience quality. This paper surveys architectural characteristics of edge-computing applications, analyzes causes of the long-tail latency issue, categorizes key theories and methods of the network latency measurement, summarizes long-tail latency optimization techniques, and finally proposes the idea of constructing an online optimization runtime environment and discusses some open challenges.
  • Related Articles

    [1]Yu Zihao, Chen Lu, Sun Ninghui, Bao Yungang. Quality Optimization Method of Dynamic Binary Translation Code Targeting for RISC-V[J]. Journal of Computer Research and Development, 2023, 60(10): 2322-2334. DOI: 10.7544/issn1000-1239.202220296
    [2]Yu Yaxin, Zhang Wenchao, Li Zhenguo, Li Ying. Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN[J]. Journal of Computer Research and Development, 2020, 57(12): 2556-2570. DOI: 10.7544/issn1000-1239.2020.20190275
    [3]Li Chunhua, Wang Hua, Zhang Yanzhe, Zhou Ke. Optimization for Broadcast Encryption in Cloud Using Extended Public Key[J]. Journal of Computer Research and Development, 2017, 54(12): 2818-2824. DOI: 10.7544/issn1000-1239.2017.20170902
    [4]Wu Fenfen, Liu Ligang. Stable Equilibrium Optimization for 3D Printed Objects[J]. Journal of Computer Research and Development, 2017, 54(3): 549-556. DOI: 10.7544/issn1000-1239.2017.20150911
    [5]Zhong Ming, Wang Sheng, and Liu Mengchi. An Optimization Approach of Known-Item Search on Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2014, 51(1): 54-63.
    [6]Zhao Yuelong, Xie Xiaoling, Cai Yongcai, Wang Guohua, and Liu Lin. A Strategy of Small File Storage Access with Performance Optimization[J]. Journal of Computer Research and Development, 2012, 49(7): 1579-1586.
    [7]Tang Tao, Yang Xuejun, and Lin Yisong. Locality Analysis and Optimization for Stream Programs Based on Iteration Sequence[J]. Journal of Computer Research and Development, 2012, 49(6): 1363-1375.
    [8]Zhao Xia, Guo Yao, Chen Xiangqun. Research Progresses on Energy-Efficient Software Optimization Techniques[J]. Journal of Computer Research and Development, 2011, 48(12): 2308-2316.
    [9]Wang Jin, Li Dequan, and Feng Dengguo. An Automatically Optimized Distributed Intrusion Detection System Using Mobile Agent[J]. Journal of Computer Research and Development, 2006, 43(1): 9-14.
    [10]Dou Quansheng, Zhou Chunguang, and Ma Ming. Two Improvement Strategies for Particle Swarm Optimization[J]. Journal of Computer Research and Development, 2005, 42(5): 897-904.
  • Cited by

    Periodical cited type(13)

    1. 程巍,王红英,娄岩. 基于“5G云+VR”的心脏解剖虚拟仿真教学系统的构建与应用. 中国医学教育技术. 2025(02): 223-228 .
    2. 费星瑞,谢逸. 基于HMM-NN的用户点击流识别. 计算机科学. 2022(07): 340-349 .
    3. 王同贺,华昊辰,曹军威. 共识边缘计算及其在能源互联网中的应用. 电力建设. 2021(02): 116-125 .
    4. 柴艳娜. 内核网络堆栈的Go语言实现与分析. 电子设计工程. 2021(13): 34-37+42 .
    5. 樊琦,李卓,陈昕. 基于边缘计算的分支神经网络模型推断延迟优化. 计算机应用. 2020(02): 342-346 .
    6. 向安玲,杨钰雯. 边缘计算在传媒领域的应用. 中国传媒科技. 2020(03): 113-116 .
    7. 常国锋. 基于信任域的环形网络介质访问时延控制仿真. 计算机仿真. 2020(03): 349-353 .
    8. 董召杰,林志达. 基于边缘计算的机巡图像缺陷识别算法研究. 自动化与仪器仪表. 2020(07): 77-80 .
    9. 张翠芳,姬楠楠. 基于模糊矩阵的多线程网络通信延迟检测技术研究. 科学技术与工程. 2020(27): 11198-11203 .
    10. 华昊辰,李宇童,王同贺,秦兆铭,曹军威. 一种基于混合随机H_2/H_∞方法的能源互联网边缘计算系统控制策略. 中国电机工程学报. 2020(21): 6875-6885 .
    11. 闫朝峰,刘清莉. 王者荣耀业务网络感知保障浅析. 通讯世界. 2019(09): 81-82 .
    12. 肖文华,刘必欣,刘巍,程钢,王跃华. 面向恶劣环境的边缘计算综述. 指挥与控制学报. 2019(03): 181-190 .
    13. 丁祥海,王志会. 边缘计算在计算机科学方向的进展研究. 信息与管理研究. 2019(06): 73-83 .

    Other cited types(6)

Catalog

    Article views (1881) PDF downloads (1115) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return