• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Hao, Wu Jianxin. A Survey on Unsupervised Image Retrieval Using Deep Features[J]. Journal of Computer Research and Development, 2018, 55(9): 1829-1842. DOI: 10.7544/issn1000-1239.2018.20180058
Citation: Zhang Hao, Wu Jianxin. A Survey on Unsupervised Image Retrieval Using Deep Features[J]. Journal of Computer Research and Development, 2018, 55(9): 1829-1842. DOI: 10.7544/issn1000-1239.2018.20180058

A Survey on Unsupervised Image Retrieval Using Deep Features

More Information
  • Published Date: August 31, 2018
  • Content-based image retrieval (CBIR) is a challenging task in computer vision. Its goal is to find images among the database images which contain the same instance as the query image. A typical image retrieval approach contains two steps: extract a proper representation vector from each raw image, and then retrieve via nearest neighbor search on those representations. The quality of the image representation vector extracted from raw image is the key factor to determine the overall performance of an image retrieval approach. Image retrieval have witnessed two developing stages, namely hand-craft feature based approaches and deep feature based approaches. Furthermore, there are two phases in each stage, i.e., one phase of using global feature and another phase of using local feature based approaches. Due to the limited representation power of hand-craft features, nowadays, the research focus of image retrieval has shifted to how to make the full utility of deep features. In this study, we give a brief review of the development progress of unsupervised image retrieval based on different ways to extract image representations. Several representative unsupervised image retrieval approaches are then introduced and compared on benchmark image retrieval datasets. At last, we discuss a few future research perspectives.
  • Cited by

    Periodical cited type(19)

    1. 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法. 山东大学学报(理学版). 2024(05): 35-44 .
    2. 刘帆,王凤美. 多模态内容安全审核系统构建思考. 中国传媒科技. 2023(04): 149-153 .
    3. 季长清,王兵兵,秦静,汪祖民. 深度特征的实例图像检索算法综述. 计算机科学与探索. 2023(07): 1565-1575 .
    4. 周成龙,陈玉明,朱益冬. 粒K均值聚类算法. 计算机工程与应用. 2023(13): 317-324 .
    5. 张家钧,唐云祁,杨智雄,耿鹏志. 基于注意力机制的鞋型识别算法. 激光与光电子学进展. 2022(02): 365-373 .
    6. 于伟,邱彩华. 一种基于深度学习的异质域检索方法. 安徽大学学报(自然科学版). 2022(04): 30-37 .
    7. 杨得国,马兰萍,聂毓. 基于PCANet和SVM的病变眼底图像检测算法. 江西师范大学学报(自然科学版). 2022(04): 372-378 .
    8. 关海鹏,任燕,赵秋霞. 集成局部和全局特征的舰船图像检索算法. 舰船科学技术. 2021(02): 100-102 .
    9. 魏明珠,郑荣,杨竞雄. 基于深度学习的图像检索研究进展. 情报科学. 2021(05): 184-192 .
    10. 毛亚青,王亮,胡俊峰. 基于加权深度特征的医学图像并行检索仿真. 计算机仿真. 2021(11): 438-444 .
    11. 余鹰,朱慧琳,钱进,潘诚,苗夺谦. 基于深度学习的人群计数研究综述. 计算机研究与发展. 2021(12): 2724-2747 . 本站查看
    12. 谭翔纬. 基于支持向量机和用户反馈的图像检索算法. 吉林大学学报(理学版). 2020(04): 899-905 .
    13. 张超,林正春,姜允志,贾西平,王静. 用于图像检索的多区域深度特征加权聚合算法. 软件导刊. 2020(10): 133-137 .
    14. 梁观术,曹江中,戴青云,黄云飞. 一种基于注意力机制的无监督商标检索方法. 广东工业大学学报. 2020(06): 41-49 .
    15. 李英成,钱赛男,朱祥娥,刘晓龙,李晶晶. 卷积神经网络在大规模图像分类中的应用. 测绘科学. 2019(06): 121-125 .
    16. 邵福波,黄静. 图像检索研究综述. 山东化工. 2019(15): 81-82 .
    17. 石文浩,孟军,张朋,刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型. 计算机研究与发展. 2019(08): 1652-1660 . 本站查看
    18. 欧焱,冯煜晶,李文明,叶笑春,王达,范东睿. 面向数据流结构的指令内访存冲突优化研究. 计算机研究与发展. 2019(12): 2720-2732 . 本站查看
    19. 陈思聪. 基于兴趣点局部分布特征的图像检索研究. 微型电脑应用. 2019(12): 114-116+154 .

    Other cited types(33)

Catalog

    Article views (2955) PDF downloads (1433) Cited by(52)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return