• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Jiaxin, Wu Jigang, Chen Long, Sui Xiufeng. Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network[J]. Journal of Computer Research and Development, 2019, 56(3): 533-543. DOI: 10.7544/issn1000-1239.2019.20170838
Citation: Wu Jiaxin, Wu Jigang, Chen Long, Sui Xiufeng. Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network[J]. Journal of Computer Research and Development, 2019, 56(3): 533-543. DOI: 10.7544/issn1000-1239.2019.20170838

Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network

More Information
  • Published Date: February 28, 2019
  • In order to maximize the primary secrecy rate, we researched the channel resource allocation of the primary user (PU) and the secondary user (SU) in the energy harvesting cognitive radio (EHCR) which is based on the cooperative communication and energy harvesting technology. In this network, the SU, which can harvest energy from the ambient, will assist the PU with cooperative communication. As a reward, the SU can get the opportunity to access the PU’s spectrum resource when the cooperative communication is over. Given the QoS demand of SU transmission node, we design a computing method of maximizing the primary secrecy rate. Numerical results demonstrate that the secrecy capacity is inverse proportional to the energy harvesting ratio, and it is also direct proportional to the cooperative communication ratio. We also figure out that the secrecy capacity is achievable. In the end, we assume that the SU works at a constant low sending power, when the cooperative communication ratio changes from 0.2 to 0.5, our research is lifting 79.28%, 80.46%, 64.23%, 78.85% on average, respectively, on the maximization of the secrecy rate, in comparison to the existing strategy. Moreover, the proposed algorithm is about 7.34 times efficient than the existing algorithms averagely.
  • Related Articles

    [1]Zheng Fang, Shen Li, Li Hongliang, Xie Xianghui. Lightweight Error Recovery Techniques of Many-Core Processor in High Performance Computing[J]. Journal of Computer Research and Development, 2015, 52(6): 1316-1328. DOI: 10.7544/issn1000-1239.2015.20150119
    [2]Xiong Huanliang, Zeng Guosun, Wu Canghai. A Novel Scalability Metric for Parallel Computing[J]. Journal of Computer Research and Development, 2014, 51(11): 2547-2558. DOI: 10.7544/issn1000-1239.2014.20130750
    [3]Zhang Aiqing, Mo Zeyao, Yang Zhang. Three-Level Hierarchical Software Architecture for Data-Driven Parallel Computing with Applications[J]. Journal of Computer Research and Development, 2014, 51(11): 2538-2546. DOI: 10.7544/issn1000-1239.2014.20131241
    [4]Chen Qi, Chen Zuoning, Jiang Jinhu. MDDS: A Method to Improve the Metadata Performance of Parallel File System for HPC[J]. Journal of Computer Research and Development, 2014, 51(8): 1663-1670. DOI: 10.7544/issn1000-1239.2014.20121094
    [5]Cai Yong, Li Guangyao, and Wang Hu. Parallel Computing of Central Difference Explicit Finite Element Based on GPU General Computing Platform[J]. Journal of Computer Research and Development, 2013, 50(2): 412-419.
    [6]Zhang Shihui, Kong Lingfu, and Feng Liang. An Improved Hestenes SVD Method and Its Parallel Computing and Application in Parallel Robot[J]. Journal of Computer Research and Development, 2008, 45(4): 716-724.
    [7]Tu Bibo, Hong Xuehai, Zhan Jianfeng, Fan Jianping. Workflow-Based User Environment for High Performance Computing[J]. Journal of Computer Research and Development, 2007, 44(10): 1717-1723.
    [8]Wu Xiangjun, Jin Zhiyan, Chen Dehui, Song Junqiang, Yang Xuesheng. A Parallel Computing Algorithm and Its Application in New Generation of Numerical Weather Prediction System (GRAPES)[J]. Journal of Computer Research and Development, 2007, 44(3).
    [9]Liu Jie, Chi Lihua, Hu Qingfeng, Li Xiaomei. An Improved TFQMR Algorithm for Large Linear Systems Suited to Parallel Computing[J]. Journal of Computer Research and Development, 2005, 42(7): 1235-1240.
    [10]Feng Shengzhong, Tan Guangming, Xu Lin, Sun Ninghui, Xu Zhiwei. Research on the High Performance Algorithms of Dawning 4000H Bioinformatics Specific Machine[J]. Journal of Computer Research and Development, 2005, 42(6): 1053-1058.

Catalog

    Article views (911) PDF downloads (169) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return