• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Jiaxin, Wu Jigang, Chen Long, Sui Xiufeng. Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network[J]. Journal of Computer Research and Development, 2019, 56(3): 533-543. DOI: 10.7544/issn1000-1239.2019.20170838
Citation: Wu Jiaxin, Wu Jigang, Chen Long, Sui Xiufeng. Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network[J]. Journal of Computer Research and Development, 2019, 56(3): 533-543. DOI: 10.7544/issn1000-1239.2019.20170838

Secrecy Capacity Optimization Technique for Energy Harvest Cooperative Cognitive Radio Network

More Information
  • Published Date: February 28, 2019
  • In order to maximize the primary secrecy rate, we researched the channel resource allocation of the primary user (PU) and the secondary user (SU) in the energy harvesting cognitive radio (EHCR) which is based on the cooperative communication and energy harvesting technology. In this network, the SU, which can harvest energy from the ambient, will assist the PU with cooperative communication. As a reward, the SU can get the opportunity to access the PU’s spectrum resource when the cooperative communication is over. Given the QoS demand of SU transmission node, we design a computing method of maximizing the primary secrecy rate. Numerical results demonstrate that the secrecy capacity is inverse proportional to the energy harvesting ratio, and it is also direct proportional to the cooperative communication ratio. We also figure out that the secrecy capacity is achievable. In the end, we assume that the SU works at a constant low sending power, when the cooperative communication ratio changes from 0.2 to 0.5, our research is lifting 79.28%, 80.46%, 64.23%, 78.85% on average, respectively, on the maximization of the secrecy rate, in comparison to the existing strategy. Moreover, the proposed algorithm is about 7.34 times efficient than the existing algorithms averagely.
  • Related Articles

    [1]Fu Liguo, Pang Jianmin, Wang Jun, Zhang Jiahao, Yue Feng. Formal Model of Correctness and Optimization on Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(9): 2001-2011. DOI: 10.7544/issn1000-1239.2019.20180513
    [2]Zhou Zhibin, Wang Guojun, Liu Qin, Jia Weijia. A RFID Anonymous Grouping Proof Protocol Using Dual-Layer Verification[J]. Journal of Computer Research and Development, 2018, 55(12): 2674-2684. DOI: 10.7544/issn1000-1239.2018.20170787
    [3]Fu Yanyan, Zhang Min, Chen Kaiqu, Feng Dengguo. Proofs of Data Possession of Multiple Copies[J]. Journal of Computer Research and Development, 2014, 51(7): 1410-1416.
    [4]Li Tao, Zhang Jingzhong. Machine Proofs in Geometry Based on Complex Number Method[J]. Journal of Computer Research and Development, 2013, 50(9): 1963-1969.
    [5]Ma Yanfang, Zhang Min, Chen Yixiang. Formal Description of Software Dynamic Correctness[J]. Journal of Computer Research and Development, 2013, 50(3): 626-635.
    [6]Wang Yong, Fang Juan, Ren Xingtian, and Lin Li. Formal Verification of TCG Remote Attestation Protocols Based on Process Algebra[J]. Journal of Computer Research and Development, 2013, 50(2): 325-331.
    [7]Wang Changjing. Verifying the Correctness of Loop Optimization Based on Extended Logic Transformation System μTS[J]. Journal of Computer Research and Development, 2012, 49(9): 1863-1873.
    [8]Jing Shuxu, He Fazhi, Cai Xiantao, Cheng Yuan. A Method for Object Reference in Collaborative Modeling System[J]. Journal of Computer Research and Development, 2011, 48(11): 2031-2038.
    [9]Si Tiange, Tan Zhiyong, and Dai Yiqi. A Security Proof Method for Multilevel Security Models[J]. Journal of Computer Research and Development, 2008, 45(10): 1711-1717.
    [10]Wang Guilin, Qing Sihan. Security Notes on Two Cheat-Proof Secret Sharing Schemes[J]. Journal of Computer Research and Development, 2005, 42(11): 1924-1927.

Catalog

    Article views (912) PDF downloads (169) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return