• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Feng Da, Zhou Fucai, Wang Qiang, Wu Qiyu. Efficient Verifiable Outsourcing of Solving Large-Scale Linear Equations with Low Storage Overhead[J]. Journal of Computer Research and Development, 2019, 56(5): 1123-1131. DOI: 10.7544/issn1000-1239.2019.20180191
Citation: Feng Da, Zhou Fucai, Wang Qiang, Wu Qiyu. Efficient Verifiable Outsourcing of Solving Large-Scale Linear Equations with Low Storage Overhead[J]. Journal of Computer Research and Development, 2019, 56(5): 1123-1131. DOI: 10.7544/issn1000-1239.2019.20180191

Efficient Verifiable Outsourcing of Solving Large-Scale Linear Equations with Low Storage Overhead

More Information
  • Published Date: April 30, 2019
  • This paper studies the secure outsourcing problem of large-scale linear equations, and proposes a new secure outsourcing scheme of large-scale linear equations in the fully malicious model. First, we construct a pseudo-random invertible sparse matrix generation algorithm involving pseudo-random number generator and the property of strictly diagonally dominant matrix. Then we combine this algorithm with the process of encoding/decoding dense matrix with sparse matrix and give the new outsourcing scheme. The client in our scheme only needs 1 round interaction with the server and can detect the misbehavior of the server with an overwhelming probability (fully verifiable). In addition, compared with the previous schemes which require expensive storage overhead, our scheme reduces the overhead of storage to a constant level for the first time. We give the theoretical proof of the correctness, privacy and unforgeability of our scheme. Besides, the scheme can successfully handle the equations with no solution with enough privacy in our model. We compare the scheme with others and indicate the proposed scheme is superior to the existing ones in terms of efficiency, verifiability and storage overhead and finally provide the experimental evaluation that demonstrates the efficiency of our algorithms and the storage overhead the client needs.
  • Related Articles

    [1]Zhang Jing, Ju Jialiang, Ren Yonggong. Double-Generators Network for Data-Free Knowledge Distillation[J]. Journal of Computer Research and Development, 2023, 60(7): 1615-1627. DOI: 10.7544/issn1000-1239.202220024
    [2]Li Tao, Liu Yali. A Double PUF-Based RFID Authentication Protocol[J]. Journal of Computer Research and Development, 2021, 58(8): 1801-1810. DOI: 10.7544/issn1000-1239.2021.20200477
    [3]Ouyang Dantong, Zhi Huayun, Liu Bowen, Zhang Liming, Zhang Yonggang. A Method of Computing Minimal Diagnoses Based on Pseudo-Failure-Degree to Create New Enumeration Tree[J]. Journal of Computer Research and Development, 2018, 55(4): 782-790. DOI: 10.7544/issn1000-1239.2018.20170016
    [4]Gao Peng, Wang Dongsheng, Wang Haixia. Increasing PCM Lifetime by Using Pipelined Pseudo-Random Encoding Algorithm[J]. Journal of Computer Research and Development, 2017, 54(6): 1357-1366. DOI: 10.7544/issn1000-1239.2017.20170065
    [5]Gao Shujing, Qu Yingjie, Song Tingqiang. Pseudorandom Number Generators Based on One-Way Functions[J]. Journal of Computer Research and Development, 2015, 52(6): 1394-1399. DOI: 10.7544/issn1000-1239.2015.20131954
    [6]Jiang Jinsong, Yan Kun, Ni Guiqiang, He Ming, and Yang Bo. Generic GUI Generator Based on XML and XSD[J]. Journal of Computer Research and Development, 2012, 49(4): 826-832.
    [7]Zhu Hegui, Zhang Xiangde, Yang Lianping, and Tang Qingsong. Fingerprint-Based Random Sequence Generator[J]. Journal of Computer Research and Development, 2009, 46(11): 1862-1867.
    [8]Tian Junfeng, Jiao Hongqiang, Li Ning, and Liu Tao. Double Secret Keys and Double Random Numbers Authentication Scheme[J]. Journal of Computer Research and Development, 2008, 45(5): 779-785.
    [9]Shi Rui and Yang Xiaozong. Research on the Node Spatial Probabilistic Distribution of the Random Waypoint Mobility Model for Ad Hoc Network[J]. Journal of Computer Research and Development, 2005, 42(12): 2056-2062.
    [10]Lü Yanli, Li Xiaojian, Xia Chunhe, and Liu Shuzhi. Research on the Security of Initial Sequence Number Generation Arithmetic[J]. Journal of Computer Research and Development, 2005, 42(11): 1940-1945.
  • Cited by

    Periodical cited type(4)

    1. 丁艳,王娜,杜学绘. 基于区块链的大规模线性方程组外包计算方案. 信息安全学报. 2025(01): 91-104 .
    2. 郭煜. 改进粒子群优化算法的非线性方程组求解研究. 自动化技术与应用. 2022(07): 6-9 .
    3. 朱良杰,沈佳杰,周扬帆,王新. 云际存储系统性能优化研究现状与展望. 计算机工程与科学. 2021(05): 761-772 .
    4. 习宇兴,唐敏,庞健虎,张宇浩. 基于Gauss迭代法的线性方程组隐私保护外包计算. 现代信息科技. 2021(04): 149-152 .

    Other cited types(1)

Catalog

    Article views (1101) PDF downloads (310) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return