• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zou Baixian, Xu Shaowu, Miao Jun, Lu Yanling. Feature Extraction and Recognition of Vibration Signals in Optical Fiber Security System[J]. Journal of Computer Research and Development, 2019, 56(9): 1859-1871. DOI: 10.7544/issn1000-1239.2019.20180382
Citation: Zou Baixian, Xu Shaowu, Miao Jun, Lu Yanling. Feature Extraction and Recognition of Vibration Signals in Optical Fiber Security System[J]. Journal of Computer Research and Development, 2019, 56(9): 1859-1871. DOI: 10.7544/issn1000-1239.2019.20180382

Feature Extraction and Recognition of Vibration Signals in Optical Fiber Security System

Funds: This work was supported by the National Natural Science Foundation of China (41671165, 61650201), the Beijing Municipal Education Commission Project (KM201911232003), the Research Fund from Beijing Innovation Center for Future Chips (KYJJ2018004), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (IDHT20180515).
More Information
  • Published Date: August 31, 2019
  • Optical fiber vibration sensor is widely used in the new generation of security monitoring system. The feature extraction and recognition methods of optical fiber vibration signal have become a research hotspot in the field of pattern recognition. The feature extraction and recognition methods of various optical fiber signals are summarized. These feature extraction methods decompose optical fiber vibration signals from the perspective of time domain, so different attribute characteristics of signals can be extracted. The empirical thresholds, neural networks and support vector machines are used to identify optical fiber vibration signals. Up to now, there is still a problem that the correct recognition rate of optical fiber intrusion events is not high. Vibration signal data of five kinds of optical fiber vibration signals, such as excavator mining, artificial digging, vehicle walking, personnel walking and noise, are visually analyzed. An effective method for feature selection of optical fiber vibration signal is proposed. According to the importance of optical fiber vibration intrusion events, identification tasks are completed in four stages, and the two-class task decision tree model and the constrained extreme learning machine algorithm are used to identify the type of intrusion events,which improves the correct recognition rate of all kinds of events.
  • Related Articles

    [1]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [2]Chen Honglong, Li Renfa, Li Rui, Edwin Sha. An Assignment Model and Algorithm for Self-Adaptive Software Based on Architecture[J]. Journal of Computer Research and Development, 2011, 48(12): 2300-2307.
    [3]Han Donghong, Gong Pizhen, Xiao Chuan, Zhou Rui. Load Shedding Strategies on Sliding Window Joins over Data Streams[J]. Journal of Computer Research and Development, 2011, 48(1): 103-109.
    [4]Yu Jiong, Tian Guozhong, Cao Yuanda, Sun Xianhe. A Resource Allocating Algorithm in Grid Workflow Based on Critical Regions Reliability[J]. Journal of Computer Research and Development, 2009, 46(11): 1821-1829.
    [5]Yu Kun, Wu Guoxin, Xu Libo, Wu Peng. Optimal Path Based Geographic Routing in Ad Hoc Networks[J]. Journal of Computer Research and Development, 2007, 44(12): 2004-2011.
    [6]Wang Tao, Li Zhoujun, Yan Yuejin, Chen Huowang. A Survey of Classification of Data Streams[J]. Journal of Computer Research and Development, 2007, 44(11): 1809-1815.
    [7]Yang Xuemei, Dong Yisheng, Xu Hongbing, Liu Xuejun, Qian Jiangbo, Wang Yongli. Online Correlation Analysis for Multiple Dimensions Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1744-1750.
    [8]Wang Yongli, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Liu Xuejun. Algorithms for Incremental Aggregation over Distributed Data Stream[J]. Journal of Computer Research and Development, 2006, 43(3): 509-515.
    [9]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [10]Qian Jiangbo, Xu Hongbing, Wang Yongli, Liu Xuejun, Dong Yisheng. Simultaneous Sliding Window Join Approach over Multiple Data Streams[J]. Journal of Computer Research and Development, 2005, 42(10): 1771-1778.

Catalog

    Article views (1100) PDF downloads (382) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return