• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Liqing, Guo Dong, Wu Shaoling, Cui Haibo, Wang Wei. An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545-1555. DOI: 10.7544/issn1000-1239.2019.20180511
Citation: Zhang Liqing, Guo Dong, Wu Shaoling, Cui Haibo, Wang Wei. An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545-1555. DOI: 10.7544/issn1000-1239.2019.20180511

An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment

More Information
  • Published Date: June 30, 2019
  • The rise of container technology has brought about profound changes in the data center, and a large number of software has been transferred to micro-service deployment and delivery. Therefore, it is of a broad practical significance to optimize the startup, operation and maintenance of large-scale containers in massive user environment. At present, the mainstream container technology represented by Docker has achieved great success, but there is still much room for improvement in image volume and resource sharing. We comb the development process of virtualization technology, and clarify that lightweight virtualization technology is the future research direction, which is very important for data-sensitive applications. By establishing a library file sharing model, we explored the impact of the degree of library files sharing on the maximum number of containers that can be launched. We present an ultra-lightweight container design that minimizes the container runtime environment supporting application execution by refining the granularity of operational resources. At the same time, we extract the library files and the executable binary files into a single layer, which realizes the maximum sharing of the host’s memory resources among containers. Then, according to the above scheme, we implement an ultra-lightweight container management engine: REG (runtime environment generation), and a REG-based workflow is defined. Finally, we carry out a series of comparative experiments on mirror volume, startup speed, memory usage, container startup storm, etc., and verify the effectiveness of the proposed method in the large-scale container environment.
  • Related Articles

    [1]Zhang Yuhong, Zhi Wenwu, Li Peipei, Hu Xuegang. Semi-Supervised Method for Cross-Lingual Word Embedding Based on an Adversarial Model with Double Discriminators[J]. Journal of Computer Research and Development, 2023, 60(9): 2127-2136. DOI: 10.7544/issn1000-1239.202220036
    [2]Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
    [3]Shu Jian, Tang Jin, Liu Linlan, Hu Gang, Liu Song. Fuzzy Support Vector Regression-Based Link Quality Prediction Model for Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2015, 52(8): 1842-1851. DOI: 10.7544/issn1000-1239.2015.20140670
    [4]Huang Huajuan, Ding Shifei, Shi Zhongzhi. Smooth CHKS Twin Support Vector Regression[J]. Journal of Computer Research and Development, 2015, 52(3): 561-568. DOI: 10.7544/issn1000-1239.2015.20131444
    [5]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [6]Xiong Jinzhi, Xu Jianmin, and Yuan Huaqiang. Convergenceness of a General Formulation for Polynomial Smooth Support Vector Regressions[J]. Journal of Computer Research and Development, 2011, 48(3): 464-470.
    [7]Zeng Fanzi, Liang Zhenhua, and Li Renfa. An Approach to Mobile Position Tracking Based on Support Vector Regression and Game Theory[J]. Journal of Computer Research and Development, 2010, 47(10): 1709-1713.
    [8]Ling Ping, Wang Zhe, Zhou Chunguang, Huang Lan. Reduced Support Vector Clustering[J]. Journal of Computer Research and Development, 2010, 47(8): 1372-1381.
    [9]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [10]Liu Xiangdong, Luo Bin, and Chen Zhaoqian. Optimal Model Selection for Support Vector Machines[J]. Journal of Computer Research and Development, 2005, 42(4): 576-581.
  • Cited by

    Periodical cited type(2)

    1. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    2. 刘波涛,彭长根,吴睿雪,丁红发,谢明明. 面向数字型的轻量级保形加密算法研究. 计算机研究与发展. 2019(07): 1488-1497 . 本站查看

    Other cited types(4)

Catalog

    Article views (1084) PDF downloads (562) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return