• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Qinghua, Dong Bo, Qian Buyue, Tian Feng, Wei Bifan, Zhang Weizhan, Liu Jun. The State of the Art and Future Tendency of Smart Education[J]. Journal of Computer Research and Development, 2019, 56(1): 209-224. DOI: 10.7544/issn1000-1239.2019.20180758
Citation: Zheng Qinghua, Dong Bo, Qian Buyue, Tian Feng, Wei Bifan, Zhang Weizhan, Liu Jun. The State of the Art and Future Tendency of Smart Education[J]. Journal of Computer Research and Development, 2019, 56(1): 209-224. DOI: 10.7544/issn1000-1239.2019.20180758

The State of the Art and Future Tendency of Smart Education

More Information
  • Published Date: December 31, 2018
  • At present the smart education pattern supported by information technology such as big data analytics and artificial intelligence has become the trend of the development of education informatization, and also has become a popular research direction in academic hotspots. Firstly, we investigate and analyze the data mining technologies of two kinds of educational big data including teaching behavior and massive knowledge resources. Secondly, we focus on four vital technologies in teaching process such as learning guidance, recommendation, Q&A and evaluation, including learning path generation and navigation, learner profiling and personalized recommendations, online smart Q&A and precise evaluation. Then we compare and analyze the mainstream smart education platforms at home and abroad. Finally, we discuss the limitations of current smart education research and summarize the research and development directions of online smart learning assistants, learner smart assessment, networked group cognition, causality discovery and other smart education aspects.
  • Related Articles

    [1]Zhang Zhenyu, Jiang Yuan. Label Noise Robust Learning Algorithm in Environments Evolving Features[J]. Journal of Computer Research and Development, 2023, 60(8): 1740-1753. DOI: 10.7544/issn1000-1239.202330238
    [2]Yang Wang, Gao Mingzhe, Jiang Ting. A Malicious Code Static Detection Framework Based on Multi-Feature Ensemble Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912
    [3]Qi Qing, Cao Jian, Liu Yancen. The Evolution of Software Ecosystem in GitHub[J]. Journal of Computer Research and Development, 2020, 57(3): 513-524. DOI: 10.7544/issn1000-1239.2020.20190615
    [4]Ai Ke, Ma Guoshuai, Yang Kaikai, Qian Yuhua. A Classification Method of Scientific Collaborator Potential Prediction Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1383-1395. DOI: 10.7544/issn1000-1239.2019.20180641
    [5]Guo Yingjie, Liu Xiaoyan, Wu Chenxi, Guo Maozu, Li Ao. U-Statistics and Ensemble Learning Based Method for Gene-Gene Interaction Detection[J]. Journal of Computer Research and Development, 2018, 55(8): 1683-1693. DOI: 10.7544/issn1000-1239.2018.20180365
    [6]Zhang Hu, Tan Hongye, Qian Yuhua, Li Ru, Chen Qian. Chinese Text Deception Detection Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2015, 52(5): 1005-1013. DOI: 10.7544/issn1000-1239.2015.20131552
    [7]Gong Shu, Qu Youli, and Tian Shengfeng. Supervised Learning of an Automatic Noisy Semantic Unit Filter for Multi-Document Summarization[J]. Journal of Computer Research and Development, 2013, 50(4): 873-882.
    [8]Fu Zhongliang. A Universal Ensemble Learning Algorithm[J]. Journal of Computer Research and Development, 2013, 50(4): 861-872.
    [9]Li Ming and Zhou Zhihua. Online Semi-Supervised Learning with Multi-Kernel Ensemble[J]. Journal of Computer Research and Development, 2008, 45(12): 2060-2068.
    [10]Zhan Dechuan and Zhou Zhihua. Ensemble-Based Manifold Learning for Visualization[J]. Journal of Computer Research and Development, 2005, 42(9): 1533-1537.

Catalog

    Article views (5771) PDF downloads (2070) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return