• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Jiwei, Wang Jinsong, Shi Kai. Positive and Unlabeled Generative Adversarial Network on POI Positioning[J]. Journal of Computer Research and Development, 2019, 56(9): 1843-1850. DOI: 10.7544/issn1000-1239.2019.20180847
Citation: Tian Jiwei, Wang Jinsong, Shi Kai. Positive and Unlabeled Generative Adversarial Network on POI Positioning[J]. Journal of Computer Research and Development, 2019, 56(9): 1843-1850. DOI: 10.7544/issn1000-1239.2019.20180847

Positive and Unlabeled Generative Adversarial Network on POI Positioning

Funds: This work was supported by the National Natural Science Foundation of China (61272450), the Key Program of the Natural Science Foundation of Tianjin (18JCZDJC30700), and the Science and Technology Project of Tianjin (17ZXHLSY00060).
More Information
  • Published Date: August 31, 2019
  • With the rapid popularization of smart mobile devices, people rely more and more on location-based social networking service (LBSNS). Due to the high cost of data acquisition, point of interest (POI) positioning based on small data collection has become a big challenge. Recent research focuses on received signal strength (RSS) and simultaneous localization methods. Although there has been some research on POI positioning, the existing approaches do not discuss the problem of insufficient positive training samples. Based on the truthful positive data and a large amount of unlabeled data, a novel approach, called positive and unlabeled generative adversarial network (puGAN), is proposed. Firstly, we use positive and unlabeled method along with the generative adversarial network to effectively mine the hidden features of data. Secondly, based on the hidden features, we calibrate the positive data and unlabeled data, then treat them as the input of the discriminator. Finally, with the minimax of generator and discriminator, a POI-discriminator model is obtained. We evaluate the new method by analyzing ROC curve and the relationship between training error and testing error. The results of experiments show that the method we proposed can effectively solve the problem of insufficient positive samples and outperforms the traditional models of POI positioning, including one-class classifier, SVM and neural network.
  • Related Articles

    [1]Jiang Zetao, Huang Qinyang, Zhang Huijuan, Jin Xin, Huang Jingfan, Liao Peiqi. Unpaired Low-Light Image Enhancement Method Based on Global Consistency[J]. Journal of Computer Research and Development, 2025, 62(4): 876-887. DOI: 10.7544/issn1000-1239.202330904
    [2]Qu Zhiguo, Chen Weilong, Sun Le, Liu Wenjie, Zhang Yanchun. ECG-QGAN: A ECG Generative Information System Based on Quantum Generative Adversarial Networks[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440527
    [3]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [4]Guo Zhengshan, Zuo Jie, Duan Lei, Li Renhao, He Chengxin, Xiao Yingjie, Wang Peiyan. A Generative Adversarial Negative Sampling Method for Knowledge Hypergraph Link Prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. DOI: 10.7544/issn1000-1239.20220074
    [5]Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
    [6]Qian Yaguan, He Niannian, Guo Yankai, Wang Bin, Li Hui, Gu Zhaoquan, Zhang Xuhong, Wu Chunming. An Evasion Algorithm to Fool Fingerprint Detector for Deep Neural Networks[J]. Journal of Computer Research and Development, 2021, 58(5): 1106-1117. DOI: 10.7544/issn1000-1239.2021.20200903
    [7]Yu Haitao, Yang Xiaoshan, Xu Changsheng. Antagonistic Video Generation Method Based on Multimodal Input[J]. Journal of Computer Research and Development, 2020, 57(7): 1522-1530. DOI: 10.7544/issn1000-1239.2020.20190479
    [8]Jiang Bin, Liu Hongyu, Yang Chao, Tu Wenxuan, Zhao Zilong. A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2485-2493. DOI: 10.7544/issn1000-1239.2019.20180656
    [9]Zhang Han, Guo Yuanbo, Li Tao. Domain Named Entity Recognition Combining GAN and BiLSTM-Attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858. DOI: 10.7544/issn1000-1239.2019.20180733
    [10]Song Kehui, Zhang Ying, Zhang Jiangwei, Yuan Xiaojie. A Generative Model for Synthesizing Structured Datasets Based on GAN[J]. Journal of Computer Research and Development, 2019, 56(9): 1832-1842. DOI: 10.7544/issn1000-1239.2019.20180353
  • Cited by

    Periodical cited type(2)

    1. 陈传毅,戴卫军. 基于贝叶斯网的高维数据隐藏模式挖掘. 计算机仿真. 2021(01): 287-290+349 .
    2. 黄德胜. 社交网站数据采集与热点分析技术研究. 微型电脑应用. 2021(04): 66-69 .

    Other cited types(1)

Catalog

    Article views (1237) PDF downloads (416) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return