• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zuo Pengfei, Hua Yu, Xie Xinfeng, Hu Xing, Xie Yuan, Feng Dan. A Secure Encryption Scheme for Deep Learning Accelerators[J]. Journal of Computer Research and Development, 2019, 56(6): 1161-1169. DOI: 10.7544/issn1000-1239.2019.20190109
Citation: Zuo Pengfei, Hua Yu, Xie Xinfeng, Hu Xing, Xie Yuan, Feng Dan. A Secure Encryption Scheme for Deep Learning Accelerators[J]. Journal of Computer Research and Development, 2019, 56(6): 1161-1169. DOI: 10.7544/issn1000-1239.2019.20190109

A Secure Encryption Scheme for Deep Learning Accelerators

Funds: This work was supported by the National Natural Science Foundation of China (61772212, 61821003).
More Information
  • Published Date: May 31, 2019
  • With the rapid development of machine learning techniques, especially deep learning (DL), their application domains are wider and wider and increasingly expanded from cloud computing to edge computing. In deep learning, DL models as the intellectual property (IP) of model providers become important data. We observe that DL accelerators deployed on edge devices for edge computing have the risk of leaking DL models stored on them. Attackers are able to easily obtain the DL model data by snooping the memory bus connecting the on-chip accelerator and off-chip device memory. Therefore, encrypting data transmitted on the memory bus is non-trivial. However, directly using memory encryption in DL accelerators significantly decreases their performance. To address this problem, this paper proposes COSA, a COunter mode Secure deep learning Accelerator architecture. COSA achieves higher security level than direct encryption and removes decryption operations from the critical path of memory accesses by leveraging counter mode encryption. We have implemented COSA in GPGPU-Sim and evaluated it using the neural network workload. Experimental results show COSA improves the performance of the secure accelerator by over 3 times compared with direct encryption and causes only 13% performance decrease compared with an insecure accelerator without using encryption.
  • Related Articles

    [1]Liu Le, Guo Shengnan, Jin Xiyuan, Zhao Miaomiao, Chen Ran, Lin Youfang, Wan Huaiyu. Spatial-Temporal Traffic Data Imputation Method with Uncertainty Modeling[J]. Journal of Computer Research and Development, 2025, 62(2): 346-363. DOI: 10.7544/issn1000-1239.202330455
    [2]Xu Xiao, Ding Shifei, Sun Tongfeng, Liao Hongmei. Large-Scale Density Peaks Clustering Algorithm Based on Grid Screening[J]. Journal of Computer Research and Development, 2018, 55(11): 2419-2429. DOI: 10.7544/issn1000-1239.2018.20170227
    [3]Yang Zhuoqun, Jin Zhi. Self-Adaptive Decision Making Under Uncertainty in Environment and Requirements[J]. Journal of Computer Research and Development, 2018, 55(5): 1014-1033. DOI: 10.7544/issn1000-1239.2018.20161039
    [4]Ren Lifang, Wang Wenjian, Xu Hang. Uncertainty-Aware Adaptive Service Composition in Cloud Computing[J]. Journal of Computer Research and Development, 2016, 53(12): 2867-2881. DOI: 10.7544/issn1000-1239.2016.20150078
    [5]Xu Zhengguo, Zheng Hui, He Liang, Yao Jiaqi. Self-Adaptive Clustering Based on Local Density by Descending Search[J]. Journal of Computer Research and Development, 2016, 53(8): 1719-1728. DOI: 10.7544/issn1000-1239.2016.20160136
    [6]Zhang Zhifei, Miao Duoqian, Nie Jianyun, Yue Xiaodong. Sentiment Uncertainty Measure and Classification of Negative Sentences[J]. Journal of Computer Research and Development, 2015, 52(8): 1806-1816. DOI: 10.7544/issn1000-1239.2015.20150253
    [7]Xu Min, Deng Zhaohong, Wang Shitong, Shi Yingzhong. MMCKDE: m-Mixed Clustering Kernel Density Estimation over Data Streams[J]. Journal of Computer Research and Development, 2014, 51(10): 2277-2294. DOI: 10.7544/issn1000-1239.2014.20130718
    [8]Pan Weimin and He Jun. Neuro-Fuzzy System Modeling with Density-Based Clustering[J]. Journal of Computer Research and Development, 2010, 47(11): 1986-1992.
    [9]Yu Canling, Wang Lizhen, and Zhang Yuanwu. An Enhancement Algorithm of Cluster Boundaries Precision Based on Grid's Density Direction[J]. Journal of Computer Research and Development, 2010, 47(5): 815-823.
    [10]Chen Jianmei, Lu Hu, Song Yuqing, Song Shunlin, Xu Jing, Xie Conghua, Ni Weiwei. A Possibility Fuzzy Clustering Algorithm Based on the Uncertainty Membership[J]. Journal of Computer Research and Development, 2008, 45(9): 1486-1492.

Catalog

    Article views (1659) PDF downloads (792) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return