• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111
Citation: Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111

Modeling Computational Feature of Multi-Layer Neural Network

Funds: This work was supported by the National Natural Science Foundation of China(61772350), the Common Information System Equipment Pre-research Funds (Open Project) (JZX2017-0988/Y300), Beijing Nova Program (Z181100006218093), the Open Project of State Key Laboratory of Computer Architecture (CARCH201607), the Research Fund from Beijing Innovation Center for Future Chips (KYJJ2018008), the Construction Plan of Beijing High-level Teacher Team (CIT&TCD201704082), and the Capacity Building for Sci-Tech Innovation Fundamental Scientific Research Funds (19530050173, 025185305000).
More Information
  • Published Date: May 31, 2019
  • Deep neural networks (DNNs) have become increasingly popular as machine learning technique in applications, due to their ability to achieve high accuracy for tasks such as speech/image recognition. However, with the rapid growth on the scale of data and precision of recognition, the topology of neural network is becoming more and more complicated. Thus, how to design the energy-efficiency and programmability, neural or deep learning accelerator plays an essential role in next generation computer. In this paper, we propose a layer granularity analysis method, which could extract computation operations and memory requirement features through general expression and basic operation attributions. We also propose a max value replacement schedule strategy, which schedules the computation hardware resource based on the network feature we extract. Evaluation results show our method can increase computational efficiency and lead to a higher resource utilization.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [3]Wu Wanqing, Zhao Yongxin, Wang Qiao, Di Chaofan. A Safe Storage and Release Method of Trajectory Data Satisfying Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(11): 2430-2443. DOI: 10.7544/issn1000-1239.2021.20210589
    [4]Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886
    [5]Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647
    [6]He Ming, Chang Mengmeng, Wu Xiaofei. A Collaborative Filtering Recommendation Method Based on Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(7): 1439-1451. DOI: 10.7544/issn1000-1239.2017.20160207
    [7]Zhang Xiaojian, Shao Chao, Meng Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. DOI: 10.7544/issn1000-1239.2016.20150304
    [8]Lu Guoqing, Zhang Xiaojian, Ding Liping, Li Yanfeng, Liao Xin. Frequent Sequential Pattern Mining under Differential Privacy[J]. Journal of Computer Research and Development, 2015, 52(12): 2789-2801. DOI: 10.7544/issn1000-1239.2015.20140516
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824

Catalog

    Article views (1477) PDF downloads (520) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return