• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu He, Ji Yu, Han Jianhui, Zhang Youhui, Zheng Weimin. Training and Software Simulation for ReRAM-Based LSTM Neural Network Acceleration[J]. Journal of Computer Research and Development, 2019, 56(6): 1182-1191. DOI: 10.7544/issn1000-1239.2019.20190113
Citation: Liu He, Ji Yu, Han Jianhui, Zhang Youhui, Zheng Weimin. Training and Software Simulation for ReRAM-Based LSTM Neural Network Acceleration[J]. Journal of Computer Research and Development, 2019, 56(6): 1182-1191. DOI: 10.7544/issn1000-1239.2019.20190113

Training and Software Simulation for ReRAM-Based LSTM Neural Network Acceleration

Funds: This work was supported by the Science and Technology Innovation Special Zone Project.
More Information
  • Published Date: May 31, 2019
  • Long short-term memory (LSTM) is mostly used in fields of speech recognition, machine translation, etc., owing to its expertise in processing and predicting events with long intervals and long delays in time series. However, most of existing neural network acceleration chips cannot perform LSTM computation efficiently, as limited by the low memory bandwidth. ReRAM-based crossbars, on the other hand, can process matrix-vector multiplication efficiently due to its characteristic of processing in memory (PIM). However, a software tool of broad architectural exploration and end-to-end evaluation for ReRAM-based LSTM acceleration is still missing. This paper proposes a simulator for ReRAM-based LSTM neural network acceleration and a corresponding training algorithm. Main features (including imperfections) of ReRAM devices and circuits are reflected by the highly configurable tools, and the core computation of simulation can be accelerated by general-purpose graphics processing unit (GPGPU). Moreover, the core component of simulator has been verified by the corresponding circuit simulation of a real chip design. Within this framework, architectural exploration and comprehensive end-to-end evaluation can be achieved.
  • Cited by

    Periodical cited type(5)

    1. 张钦宇,张智凯,安丽荣,杨君一,张瑞. 面向天基数据中心的编码修复数据流调度. 移动通信. 2023(07): 21-26 .
    2. 杨浩,李竣业. 电力用户多渠道自动缴费习惯预判预警系统设计. 信息技术. 2021(03): 155-160 .
    3. 包涵,王意洁,许方亮. 基于生成矩阵变换的跨数据中心纠删码写入方法. 计算机研究与发展. 2020(02): 291-305 . 本站查看
    4. 李慧,李贵洋,胡金平,周悦,江小玉,韩鸿宇. 基于分布式存储的OHitchhiker码. 计算机工程与设计. 2020(07): 1941-1946 .
    5. 严新成,陈越,巴阳,贾洪勇,朱彧. 云环境下支持可更新加密的分布式数据编码存储方案. 计算机研究与发展. 2019(10): 2170-2182 . 本站查看

    Other cited types(11)

Catalog

    Article views (1290) PDF downloads (877) Cited by(16)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return