Advanced Search
    Cheng Yujia, Tao Wei, Liu Yuxiang, Tao Qing. Optimal Individual Convergence Rate of the Heavy-Ball-Based Momentum Methods[J]. Journal of Computer Research and Development, 2019, 56(8): 1686-1694. DOI: 10.7544/issn1000-1239.2019.20190167
    Citation: Cheng Yujia, Tao Wei, Liu Yuxiang, Tao Qing. Optimal Individual Convergence Rate of the Heavy-Ball-Based Momentum Methods[J]. Journal of Computer Research and Development, 2019, 56(8): 1686-1694. DOI: 10.7544/issn1000-1239.2019.20190167

    Optimal Individual Convergence Rate of the Heavy-Ball-Based Momentum Methods

    • The momentum method is widely used as an acceleration technique to improve the convergence of the first-order gradient algorithms. So far, the momentum methods discussed in most literatures are only limited to the accelerated method proposed by Nesterov, but the Heavy-ball momentum method proposed by Polyak is seldom studied. In particular, in the case of non-smooth objective functions, the individual optimal convergence of Nesterov accelerated methods has been derived, and it has high performance in solving sparse optimization problems. In contrast, while it has been proved that the Heavy-ball momentum method has an optimal convergence rate,it is only in terms of the averaged outputs. To our best knowledge, whether it has optimal individual convergence or not still remains unknown. In this paper, we focus on the non-smooth optimizations. We prove that the Heavy-ball momentum method achieves the optimal individual convergence by skillfully selecting the time-varying step-size, which indicates that Heavy-ball momentum is an efficient acceleration strategy for the individual convergence of the projected subgradient methods. As an application, the constrained hinge loss function optimization problems within an l\-1-norm ball are considered. In comparison with other optimization algorithms, the experiments demonstrate the correctness of our theoretical analysis and performance of the proposed algorithms in keeping the sparsity.
    • loading

    Catalog

      Turn off MathJax
      Article Contents

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return