• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Fang, Li Ge, Hu Xing, Jin Zhi. Program Comprehension Based on Deep Learning[J]. Journal of Computer Research and Development, 2019, 56(8): 1605-1620. DOI: 10.7544/issn1000-1239.2019.20190185
Citation: Liu Fang, Li Ge, Hu Xing, Jin Zhi. Program Comprehension Based on Deep Learning[J]. Journal of Computer Research and Development, 2019, 56(8): 1605-1620. DOI: 10.7544/issn1000-1239.2019.20190185

Program Comprehension Based on Deep Learning

More Information
  • Published Date: July 31, 2019
  • Program comprehension is the process of obtaining relevant information in programs by analyzing, abstracting, and reasoning the programs. It plays an important role in software development, maintenance, migration, and other processes. It has received extensive attention in academia and industry. Traditional program comprehension relies heavily on the experience of developers. However, as the scale and complexity of software continue to grow, it is time-consuming and laborious to rely solely on the developer’s prior knowledge to extract program features, and it is difficult to fully exploit the hidden features in the program. Deep learning is a data-driven end-to-end method. It builds deep neural networks based on existing data to mine the hidden features in data, and has been successfully applied in many fields. By applying deep learning technology to program comprehension, we can automatically learn the features implied in programs, which can fully exploit the knowledge implied in the program and improve the efficiency of program comprehension. This paper surveys the research work of program comprehension based on deep learning in recent years. Firstly, we analyze the properties of the program, and then introduce mainstream program comprehension models, including sequential models, structural models, and execution traces based models. Furthermore, the applications of deep learning-based program comprehension in program analysis are introduced, which mainly focus on code completion, code summarization and code search, etc. Finally, we summarize the challenges in program comprehension research.
  • Related Articles

    [1]Li Song, Cao Wenqi, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Collective Spatial Keyword Query Based on Time-Distance Constrained and Cost Aware[J]. Journal of Computer Research and Development, 2025, 62(3): 808-819. DOI: 10.7544/issn1000-1239.202330815
    [2]Liu Le, Guo Shengnan, Jin Xiyuan, Zhao Miaomiao, Chen Ran, Lin Youfang, Wan Huaiyu. Spatial-Temporal Traffic Data Imputation Method with Uncertainty Modeling[J]. Journal of Computer Research and Development, 2025, 62(2): 346-363. DOI: 10.7544/issn1000-1239.202330455
    [3]Xu Tiancheng, Qiao Shaojie, Wu Jun, Han Nan, Yue Kun, Yi Yugen, Huang Faliang, Yuan Chang’an. A Spatial Crowdsourcing Task Assignment Approach Based on Spatio-Temporal Location Prediction[J]. Journal of Computer Research and Development, 2022, 59(2): 310-328. DOI: 10.7544/issn1000-1239.20210875
    [4]Song Xuan, Gao Yunjun, Li Yong, Guan Qingfeng, Meng Xiaofeng. Spatial Data Intelligence: Concept, Technology and Challenges[J]. Journal of Computer Research and Development, 2022, 59(2): 255-263. DOI: 10.7544/issn1000-1239.20220108
    [5]Zhang Ting, Du Yi, Huang Tao, Li Xue. A Reconstruction Method for Spatial Data Using Parallel SNESIM[J]. Journal of Computer Research and Development, 2015, 52(6): 1431-1442. DOI: 10.7544/issn1000-1239.2015.20140356
    [6]Zhang Desheng, Feng Dengguo, Chen Chi. An Authorization Model and Implementation for Vector Data in Spatial DBMS[J]. Journal of Computer Research and Development, 2011, 48(8): 1524-1533.
    [7]Zhang Yingjun, Feng Dengguo. A Role-Based Access Control Model Based on Space, Time and Scale[J]. Journal of Computer Research and Development, 2010, 47(7): 1252-1260.
    [8]Liu Runtao, Hao Zhongxiao. A Multi-Order Based Index Structure for Spatial Data—MOIS-tree[J]. Journal of Computer Research and Development, 2010, 47(5): 849-857.
    [9]Hu Caiping and Qin Xiaolin. Spatial Classification and Prediction Based on Fuzzy cmeans[J]. Journal of Computer Research and Development, 2008, 45(7): 1183-1188.
    [10]Chen Xiqian, Wang Zhanchang, Cao Xiukun, Chi Zhongxian. An Efficient Indexing Scheme for Range Aggregate Queries in Spatial Data Warehouse[J]. Journal of Computer Research and Development, 2006, 43(1): 75-80.

Catalog

    Article views (2430) PDF downloads (1664) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return