• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
Citation: Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195

Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking

More Information
  • Published Date: July 31, 2019
  • Person Re-Identification (Re-ID) focuses on identifying the same person among disjoint camera views. This task is highly challenging, especially when there exists only several images per person in the database. Aiming at the problem of insufficient number of person images in person re-identification dataset, a method that generates extra training data from the original dataset is proposed. There are two challenges in this work, one is how to get more training data from the original training set, and the other is how to deal with these newly generated training data. The deep convolutional generative adversarial network is used to generate extra unlabeled person images and label smoothing regularization is used to process these newly generated unlabeled person images. In order to further improve the accuracy of person re-identification, a new unsupervised reranking framework is proposed. This framework neither requires to recalculate a new sorted list for each image pairs nor requires any human interaction or label information. Experiments on the datasets Market-1501, CUHK03, and DukeMTMC-reID verify the effectiveness of the proposed method.
  • Cited by

    Periodical cited type(24)

    1. 祁磊,任子豪,刘俊汐,耿新. 虚实结合的行人重识别方法. 计算机研究与发展. 2025(02): 418-431 . 本站查看
    2. 苗春玲,张红云,吴卓嘉,张齐贤,苗夺谦. 多粒度遮挡特征增强的行人搜索算法. 智能系统学报. 2025(01): 230-241 .
    3. 王洪元,齐鹏宇,唐郢,张继,朱繁,徐志晨. 基于YOLOv4的行人检测算法. 常州大学学报(自然科学版). 2024(05): 52-60 .
    4. 陈利文 ,叶锋 ,黄添强 ,黄丽清 ,翁彬 ,徐超 ,胡杰 . 基于摄像头域内域间合并的无监督行人重识别方法. 计算机研究与发展. 2023(02): 415-425 . 本站查看
    5. 王洪元,徐志晨,陈海琴,丁宗元,李鹏辉. 基于金字塔分割和时空注意力的视频行人重识别. 常州大学学报(自然科学版). 2023(02): 66-76 .
    6. 冯尊登,王洪元,林龙,孙博言,陈海琴. 基于多分支注意网络与相似度学习策略的无监督行人重识别. 图学学报. 2023(02): 280-290 .
    7. 魏文芬,谢文兰,李波. 基于改进MobileNetV2和主从网络的行人重识别方法. 贵阳学院学报(自然科学版). 2023(04): 54-60 .
    8. 周东明,张灿龙,唐艳平,李志欣. 联合语义分割与注意力机制的行人再识别模型. 计算机工程. 2022(02): 201-206 .
    9. 朱敏,明章强,闫建荣,杨勇,朱佳旻. 基于生成对抗网络的行人重识别方法研究综述. 计算机辅助设计与图形学学报. 2022(02): 163-179 .
    10. 徐志晨,王洪元,齐鹏宇,欣子豪. 基于图模型与加权损失策略的视频行人重识别研究. 计算机应用研究. 2022(02): 598-603 .
    11. 殷雨昌,王洪元,陈莉,冯尊登,肖宇. 基于单标注样本的多损失学习与联合度量视频行人重识别. 计算机应用. 2022(03): 764-769 .
    12. 杨静,张灿龙,李志欣,唐艳平. 集成空间注意力和姿态估计的遮挡行人再辨识. 计算机研究与发展. 2022(07): 1522-1532 . 本站查看
    13. 孟月波,穆思蓉,刘光辉,徐胜军,韩九强. 基于向量注意力机制GoogLeNet-GMP的行人重识别方法. 计算机科学. 2022(07): 142-147 .
    14. 谭伦荣,王辉. 基于深度卷积神经网络的无线通信网络异常攻击检测. 重庆科技学院学报(自然科学版). 2022(06): 60-64 .
    15. 陈莉,王洪元,张云鹏,曹亮,殷雨昌. 联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法. 计算机应用. 2021(01): 164-169 .
    16. 戴臣超,王洪元,曹亮,殷雨昌,张继. 一种多目标跨摄像头跟踪技术研究与实现. 南京大学学报(自然科学). 2021(02): 227-236 .
    17. 陆焱,胡玉荣,郭竞. 基于稀疏表示的对抗网络图像聚焦形貌修复. 计算机仿真. 2021(03): 126-130+258 .
    18. 程换新,张志浩,刘文翰,郭占广. 基于生成对抗网络的图像识别. 计算机技术与发展. 2021(06): 175-180 .
    19. 夏道勋,郭方,刘浩杰,夏勇. 开放式行人再识别研究进展综述. 数据采集与处理. 2021(03): 449-467 .
    20. 刘春宝,王枫,尹晶. 多路通信交互信息安全性深度识别系统设计. 现代电子技术. 2021(15): 23-27 .
    21. 齐鹏宇,王洪元,张继,朱繁,徐志晨. 基于改进FCOS的拥挤行人检测算法. 智能系统学报. 2021(04): 811-818 .
    22. 张云鹏,王洪元,张继,陈莉,吴琳钰,顾嘉晖,陈强. 近邻中心迭代策略的单标注视频行人重识别. 软件学报. 2021(12): 4025-4035 .
    23. 姜海强. 多视图行人重识别算法和数据采集研究. 电脑编程技巧与维护. 2020(01): 147-149 .
    24. 曹亮,王洪元,戴臣超,陈莉,刘乾. 基于多样性约束和离散度分层聚类的无监督视频行人重识别. 南京航空航天大学学报. 2020(05): 752-759 .

    Other cited types(42)

Catalog

    Article views (1352) PDF downloads (619) Cited by(66)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return