• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Guoqiang, Ding Hangchao, Zou Jing, Jiang Han, Chen Yanqin. A Big Data Security Scheme Based on High-Performance Cryptography Implementation[J]. Journal of Computer Research and Development, 2019, 56(10): 2207-2215. DOI: 10.7544/issn1000-1239.2019.20190390
Citation: Yang Guoqiang, Ding Hangchao, Zou Jing, Jiang Han, Chen Yanqin. A Big Data Security Scheme Based on High-Performance Cryptography Implementation[J]. Journal of Computer Research and Development, 2019, 56(10): 2207-2215. DOI: 10.7544/issn1000-1239.2019.20190390

A Big Data Security Scheme Based on High-Performance Cryptography Implementation

More Information
  • Published Date: September 30, 2019
  • At present, the trend of information technology development is the artificial intelligence technology based on big data computing. Although it has made enormous contribution in the economic development, big data processing technology which includes cloud computing, fog computing, edge computing and other computing modes also brings a great risk of data security. Cryptographic technology is the kernel of the big data security. Confidentiality, authentication and privacy protection of big data need to solve the following three security problems: firstly, high-speed encryption and decryption of massive data; secondly, the authentication problem of high concurrency and large scale user; thirdly, privacy protection in data mining. The solution of these problems requires the fast implementation of the underlying cryptographic algorithm. Aiming at the logic architecture of big data security application, this paper gives a fast calculation algorithm for the cryptographic standard algorithm SM4-XTS, SM2 and modular exponentiation of large integers. It is verified on the KC705 development board based on Xilinx company, the results of experiment show that our work has certain advancement: 1) The implementation of SM4-XTS fills the blank of this direction in China. 2) SM2 signature has high performance, leading domestic similar products. 3) Modular exponentiation is applied to the productization of homomorphism cryptography, and its performance is ahead of other similar products.
  • Related Articles

    [1]Sun Qingxiao, Yang Hailong. Generalized Stencil Auto-Tuning Framework on GPU Platform[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440612
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Zhang Shuai, Li Tao, Jiao Xiaofan, Wang Yifeng, Yang Yulu. Parallel TNN Spectral Clustering Algorithm in CPU-GPU Heterogeneous Computing Environment[J]. Journal of Computer Research and Development, 2015, 52(11): 2555-2567. DOI: 10.7544/issn1000-1239.2015.20148151
    [4]Luo Xinyuan, Chen Gang, Wu Sai. A GPU-Accelerated Highly Compact and Encoding Based Database System[J]. Journal of Computer Research and Development, 2015, 52(2): 362-376. DOI: 10.7544/issn1000-1239.2015.20140254
    [5]Tang Liang, Luo Zuying, Zhao Guoxing, and Yang Xu. SOR-Based P/G Solving Algorithm of Linear Parallelism for GPU Computing[J]. Journal of Computer Research and Development, 2013, 50(7): 1491-1500.
    [6]Cai Yong, Li Guangyao, and Wang Hu. Parallel Computing of Central Difference Explicit Finite Element Based on GPU General Computing Platform[J]. Journal of Computer Research and Development, 2013, 50(2): 412-419.
    [7]Wang Zhuowei, Xu Xianbin, Zhao Wuqing, He Shuibing, Zhang Yuping. Parallel Acceleration and Performance Optimization for GRAPES Model Based on GPU[J]. Journal of Computer Research and Development, 2013, 50(2): 401-411.
    [8]Wu Xiaoxiao, Liang Xiaohui, Xu Qidi, and Zhao Qinping. An Algorithm of Physically-based Scalar-fields Guided Deformation on GPU[J]. Journal of Computer Research and Development, 2010, 47(11): 1857-1864.
    [9]Wang Jing, Wang Lili, and Li Shuai. Pre-Computed Radiance Transport All-Frequency Shadows Algorithm on GPU[J]. Journal of Computer Research and Development, 2006, 43(9): 1505-1510.
    [10]Hu Wei and Qin Kaihuai. A New Rendering Technology of GPU-Accelerated Radiosity[J]. Journal of Computer Research and Development, 2005, 42(6): 945-950.

Catalog

    Article views (2030) PDF downloads (745) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return