• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
Citation: Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414

Privacy-Preserving Logistic Regression on Vertically Partitioned Data

More Information
  • Published Date: September 30, 2019
  • Logistic regression is the important algorithms of machine learning. Traditional training methods require centralized collection of training data which will cause privacy issues. To solve this problem, this paper proposes privacy-preserving logistic regression. This scheme is suitable for dividing data by feature dimension, and the training data is shared between two parties. The two parties conduct collaborative training and learn a shared model. In this scheme, the two parties train the model locally on private data set while exchanging the intermediate calculation results without directly exposing their private data. Additionally, the additively homomorphic scheme can ensure the calculation security which can be performed on the cipher text. During the training process, the participants can only obtain zero knowledge of each other and cannot get any information about model parameters and training data of another participant. At the same time, a privacy protection prediction method is provided to ensure that the model deployment server cannot obtain the private data of the inquirer. After analysis and experimental verification, within the tolerable loss of precision, the scheme is secure against semi-honest participants and provide privacy protection.
  • Related Articles

    [1]Shang Junlin, Zhang Zhenyu, Qu Wenwen, Wang Xiaoling. Survey of Graph Partitioning Techniques for Distributed Graph Computing[J]. Journal of Computer Research and Development, 2025, 62(1): 90-103. DOI: 10.7544/issn1000-1239.202330790
    [2]Wei Jia, Zhang Xingjun, Wang Longxiang, Zhao Mingqiang, Dong Xiaoshe. MC2 Energy Consumption Model for Massively Distributed Data Parallel Training of Deep Neural Network[J]. Journal of Computer Research and Development, 2024, 61(12): 2985-3004. DOI: 10.7544/issn1000-1239.202330164
    [3]Lu Feng, Li Wei, Gu Lin, Liu Shuai, Wang Runheng, Ren Yufei, Dai Xiaohai, Liao Xiaofei, Jin Hai. Selection of Reputable Medical Participants Based on an Iterative Collaborative Learning Framework[J]. Journal of Computer Research and Development, 2024, 61(9): 2347-2363. DOI: 10.7544/issn1000-1239.202330270
    [4]Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
    [5]Ma Qingyun, Ji Hangxu, Zhao Yuhai, Mao Keming, Wang Guoren. An Efficient Data Partitioning Method in Distributed Heterogeneous Bandwidth Environment[J]. Journal of Computer Research and Development, 2020, 57(12): 2683-2693. DOI: 10.7544/issn1000-1239.2020.20190683
    [6]Zhang Honglei, Shi Yuliang, Zhang Shidong, Zhou Zhongmin, Cui Lizhen. A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464. DOI: 10.7544/issn1000-1239.2016.20150553
    [7]Fu Anmin, Qin Ningyuan, Song Jianye, Su Mang. Privacy-Preserving Public Auditing for Multiple Managers Shared Data in the Cloud[J]. Journal of Computer Research and Development, 2015, 52(10): 2353-2362. DOI: 10.7544/issn1000-1239.2015.20150544
    [8]Li Xiongfei, Li Jun, Qu Chengwei, Liu Lijuan, Sun Tao. Balancing Method for Skewed Training Set in Data Mining[J]. Journal of Computer Research and Development, 2012, 49(2): 346-353.
    [9]Fang Weiwei, Ren Jiang, Xia Hongke. Heterogeneous Distributed Linear Regression Privacy-Preserving Modeling[J]. Journal of Computer Research and Development, 2011, 48(9): 1685-1692.
    [10]Ni Weiwei, Chen Geng, Sun Zhihui. An Efficient Density-Based Clustering Algorithm for Vertically Partitioned Distributed Datasets[J]. Journal of Computer Research and Development, 2007, 44(9): 1612-1617.
  • Cited by

    Periodical cited type(15)

    1. 徐胜超,邓斌涛. 强混合样本面板数据模型回归样条估计. 信息技术. 2024(02): 73-77 .
    2. 赵建民,张珺博,崔佳鑫. 基于Stacking的套损预测方法研究. 计算机与数字工程. 2024(06): 1685-1690 .
    3. 王大星,周强,滕济凯. 基于同态加密和牛顿迭代法的数据隐私保护模型. 湖南科技大学学报(自然科学版). 2024(02): 69-74 .
    4. 产院东,沈鸿喆,张欣怡,杨留磊,胡杰,夏爽. 一种基于机器学习的内部威胁检测算法. 信息化研究. 2024(05): 25-31 .
    5. 唐敏,张宇浩,邓国强. 一种高效的非交互式隐私保护逻辑回归模型. 计算机工程. 2023(04): 32-42+51 .
    6. 李国,张秋杰. 基于纵向联邦学习的航班延误预测. 计算机工程与设计. 2023(05): 1594-1601 .
    7. 史汶泽,陆林,秦文杰,于涛. 一种可信执行环境下的联邦逻辑回归评分卡系统. 应用科学学报. 2023(03): 488-499 .
    8. 陈晶,彭长根,谭伟杰,许德权. 基于差分隐私和秘密共享的多服务器联邦学习方案. 信息网络安全. 2023(07): 98-110 .
    9. 王炎,段成阁. 基于大数据技术的用户个人信息隐私数据保护研究. 情报科学. 2023(07): 100-105 .
    10. 张泽辉,李庆丹,富瑶,何宁昕,高铁杠. 面向非独立同分布数据的自适应联邦深度学习算法. 自动化学报. 2023(12): 2493-2506 .
    11. 王坤庆,刘婧,李晨,赵语杭,吕浩然,李鹏,刘炳莹. 联邦学习安全威胁综述. 信息安全研究. 2022(03): 223-234 .
    12. 产院东,孟剑萍,郭乔进,吴其华,梁中岩,胡杰. 基于机器学习的恶意软件分析算法. 信息化研究. 2022(03): 23-30 .
    13. 孙爽,李晓会,刘妍,张兴. 不同场景的联邦学习安全与隐私保护研究综述. 计算机应用研究. 2021(12): 3527-3534 .
    14. 黄晓文,王政杰,崔硕硕,张宇浩,邓国强. 一种基于随机掩码的低通信量Logistic回归外包训练方案. 科技资讯. 2021(34): 5-9 .
    15. 邓正义. 基于同态加密技术的实验室开放管理系统研究. 产业科技创新. 2019(35): 106-108 .

    Other cited types(14)

Catalog

    Article views (1552) PDF downloads (1172) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return