• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Huang Peixin, Zhao Xiang, Fang Yang, Zhu Huiming, Xiao Weidong. End-to-end Knowledge Triplet Extraction Combined with Adversarial Training[J]. Journal of Computer Research and Development, 2019, 56(12): 2536-2548. DOI: 10.7544/issn1000-1239.2019.20190640
Citation: Huang Peixin, Zhao Xiang, Fang Yang, Zhu Huiming, Xiao Weidong. End-to-end Knowledge Triplet Extraction Combined with Adversarial Training[J]. Journal of Computer Research and Development, 2019, 56(12): 2536-2548. DOI: 10.7544/issn1000-1239.2019.20190640

End-to-end Knowledge Triplet Extraction Combined with Adversarial Training

More Information
  • Published Date: November 30, 2019
  • As a system to effectively represent the real world, knowledge graph has been widely concerned by academia and industry, and its ability to accurately represent knowledge is widely used in upper applications such as information service, intelligent search, and automatic question answering. A fact (knowledge) in form of triplet (head_entity, relation, tail_entity), is the basic unit of knowledge graph. Since facts in existing knowledge graphs are far from enough to describe the real world, acquiring more knowledge for knowledge graph completion and construction appears to be crucial. This paper investigates the problem of knowledge triplet extraction in the task of knowledge acquisition. This paper proposes an end-to-end knowledge triplet extraction method combined with adversarial training. Traditional techniques, whether pipeline or joint extraction, failed to discover the link between two subtasks of named entity recognition and relation extraction, which led to error propagation and worse extraction effectiveness. To overcome these flaws, in this paper, we adopt an entity and relation joint tagging strategy, and leverage an end-to-end framework to automatically tag the text and classify the tagging results. In addition, self-attention mechanism is added to assist the encoding of text, an objective function with bias term is additionally introduced to increase the attention of relevant entities, and the adversarial training is utilized to improve the robustness of the model. In experiments, we evaluate the proposed knowledge triplet extraction model via three evaluation metrics and analyze the experiments in four aspects. The experimental results verify that our model outperforms other state-of-the-art alternatives on knowledge triplet extraction.
  • Related Articles

    [1]Du Liang, Li Xiaodong, Chen Yan, Zhou Peng, Qian Yuhua. Double-Ended Joint Learning for Multi-View Clustering[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440175
    [2]Zhang Wenzhu, Yu Jinghua. Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation[J]. Journal of Computer Research and Development, 2023, 60(2): 371-385. DOI: 10.7544/issn1000-1239.202110803
    [3]Hou Bowen, Guo Hongbin, Shi Leyi. File Covert Transfer Strategy Based on End Hopping and Spreading[J]. Journal of Computer Research and Development, 2020, 57(11): 2283-2293. DOI: 10.7544/issn1000-1239.2020.20200420
    [4]Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
    [5]Dong Hualei, Wang Jian, Lin Hongfei, Wang Hao. A Study of Query Expansion Based on Social Tagging[J]. Journal of Computer Research and Development, 2015, 52(11): 2488-2495. DOI: 10.7544/issn1000-1239.2015.20140805
    [6]Wang Yonggang, Yan Hanbing, Xu Junfeng, Hu Jianbin, Chen Zhong. Research on Countermeasures Against Tag Spam[J]. Journal of Computer Research and Development, 2013, 50(10): 2029-2043.
    [7]Zhang Xiaoliang, Tu Yongce, Ma Hengtai, Yang Zhian, Hu Xiaohui. An End-to-End Authentication Protocol for Satellite Communication Network[J]. Journal of Computer Research and Development, 2013, 50(3): 540-547.
    [8]Li Peng, Wang Bin, Shi Zhiwei, Cui Yachao, and Li Hengxun. Tag-TextRank: A Webpage Keyword Extraction Method Based on Tags[J]. Journal of Computer Research and Development, 2012, 49(11): 2344-2351.
    [9]Shen Zhuowei and Wang Yun. A Schedulability Analysis Algorithm for EDF-Based End-to-End Real-Time Systems[J]. Journal of Computer Research and Development, 2006, 43(5): 813-820.
    [10]Zhao Yan, Wang Xiaolong, Liu Bingquan, and Guan Yi. Fusion of Clustering Trigger-Pair Features for POS Tagging Based on Maximum Entropy Model[J]. Journal of Computer Research and Development, 2006, 43(2): 268-274.
  • Cited by

    Periodical cited type(14)

    1. 廖涛,沈文龙,张顺香,马文祥. 基于对抗训练的事件要素识别方法. 计算机工程与设计. 2024(02): 540-545 .
    2. 冯钧,畅阳红,陆佳民,唐海麟,吕志鹏,邱钰淳. 基于大语言模型的水工程调度知识图谱的构建与应用. 计算机科学与探索. 2024(06): 1637-1647 .
    3. 林海香,白万胜,赵正祥,胡娜娜,李冬,陆人杰. 面向高速铁路道岔运维文本的知识抽取方法. 铁道科学与工程学报. 2024(07): 2569-2580 .
    4. 刘文亮,吴飞,何德明,赵维伟,潘建宏. 基于相异度矩阵的碎片化回复文本聚类方法. 计算机与现代化. 2024(09): 56-60 .
    5. 乔勇鹏 ,于亚新 ,刘树越 ,王子腾 ,夏子芳 ,乔佳琪 . 图卷积增强多路解码的实体关系联合抽取模型. 计算机研究与发展. 2023(01): 153-166 . 本站查看
    6. 杨延云,杜建强,聂斌,罗计根,贺佳. 融合数据增强和注意力机制的中医实体及关系联合抽取. 智能计算机与应用. 2023(08): 186-191+196 .
    7. 王哲,谢玮. 基于改进CycleGan模型的动画视频CDS仿真. 计算机仿真. 2022(01): 195-199 .
    8. 魏晓,王晓鑫,陈永琪,张惠然. 基于自然语言处理的材料领域知识图谱构建方法. 上海大学学报(自然科学版). 2022(03): 386-398 .
    9. 董哲,王亚,马传孝,李志军. 融合对抗训练和胶囊网络的食品安全关系抽取模型. 科学技术与工程. 2022(23): 10162-10168 .
    10. 吴玉,付雪峰,王涛. 基于改进级联二元标记框架的关系抽取方法. 南昌工程学院学报. 2022(06): 86-90+111 .
    11. 何俊,刘鹏,聂勇,吴慎珂,刘鹏政,钟可佳. 基于Seq2seq实体关系联合抽取的电力知识图谱构建. 实验室研究与探索. 2022(07): 1-5+17 .
    12. 田佳来,吕学强,游新冬,肖刚,韩君妹. 基于分层序列标注的实体关系联合抽取方法. 北京大学学报(自然科学版). 2021(01): 53-60 .
    13. 付雷杰,曹岩,白瑀,冷杰武. 国内垂直领域知识图谱发展现状与展望. 计算机应用研究. 2021(11): 3201-3214 .
    14. 张军莲,张一帆,汪鸣泉,黄永健. 基于图卷积神经网络的中文实体关系联合抽取. 计算机工程. 2021(12): 103-111 .

    Other cited types(19)

Catalog

    Article views (1552) PDF downloads (721) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return