• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Jiaying, Yu Jiong, Yang Xingyao. A Feature Extraction Based Recommender Algorithm Fusing Semantic Analysis[J]. Journal of Computer Research and Development, 2020, 57(3): 562-575. DOI: 10.7544/issn1000-1239.2020.20190189
Citation: Chen Jiaying, Yu Jiong, Yang Xingyao. A Feature Extraction Based Recommender Algorithm Fusing Semantic Analysis[J]. Journal of Computer Research and Development, 2020, 57(3): 562-575. DOI: 10.7544/issn1000-1239.2020.20190189

A Feature Extraction Based Recommender Algorithm Fusing Semantic Analysis

Funds: This work was supported by the National Natural Science Foundation of China (61862060, 61462079, 61562086, 61562078).
More Information
  • Published Date: February 29, 2020
  • Recommender system is an effective way to deal with the problem of personalized recommendations. Most existing recommendation methods have insufficient power to analysize inherent characteristics of users and items. To alleviate the problem, a feature extraction based recommender algorithm that fuses semantic analysis is proposed in this paper, which involves knowledge graph as heterogeneous information to enhance semantic analysis of collaborative filtering. First of all, the named entity recognition (NER) and entity linking (EL) are used to extract entities and relations about a certain item from its unstructured text information, and we construct a subgraph based on these identified entities and relations. Then we embed the subgraph to a low latent vector space by the technology of knowledge graph embedding for an easier expression. After that, the embedding results are used to represent users and items, and we design a knowledge aware collaborative learning framework to learn the fine-grained features of users and items. Finally, the embedding results are used to make Top-N recommendations for a target user. Experimental results based on two datasets show that our new framework is able to improve the recommender accuracy compared with some state-of-the-art models. It means that our new method is able to recommender items which are better matches in users’ preferences.
  • Cited by

    Periodical cited type(15)

    1. 暴琳,朱志宇,孙晓燕,徐标. 面向多源异构数据的个性化搜索和推荐算法综述. 控制理论与应用. 2024(02): 189-209 .
    2. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
    3. 任秋臻,陈红梅,周丽华. 基于时间信息表示学习的个性化推荐方法. 计算机技术与发展. 2023(01): 34-41 .
    4. 陈莎莎. 基于JSP网页技术的高校PU系统功能可视化界面设计. 自动化与仪器仪表. 2023(02): 146-151 .
    5. 潘茂,张梦菲,辛增卫,金佳琪,陈娟,方金云,刘晓东. 基于超图卷积网络的重复性消费会话推荐算法. 高技术通讯. 2023(05): 497-510 .
    6. 金佳琪,张梦菲,潘茂,褚志海,方金云. 基于用户意图消歧的解离协同过滤算法. 高技术通讯. 2023(05): 479-488 .
    7. 李斌,许朝阳,王尚鹏. 多访问并行特征提取下大数据准确推荐仿真. 计算机仿真. 2023(07): 486-490 .
    8. 陈嘉超,卢敏,丁伟健,陈志辉. 基于加权Slope One填充的协同聚类推荐算法. 现代信息科技. 2023(22): 73-77+82 .
    9. 杨晨光,李伟,杜怡然. CRCLA编译前端中代码检测与DFG生成技术研究. 计算机工程与应用. 2023(23): 63-72 .
    10. 张梦菲,郭诚,潘茂,金佳琪,辛增卫,方金云,陈树肖. 基于会话推荐的动态层次意图建模. 高技术通讯. 2022(04): 367-378 .
    11. 杨柳青,王冲. 基于多特征融合的异质信息搜索推荐算法研究. 计算机工程与应用. 2022(13): 171-176 .
    12. 张君,王立. 基于数据共享的大数据特征快速提取方法. 自动化与仪器仪表. 2022(08): 66-70 .
    13. 彭德军,曹树斌,马平,赵俊达. 煤矿安全隐患信息关键语义智能提取方法研究. 煤炭工程. 2022(S1): 224-229 .
    14. 钟仁毅,王翀,梁鹏,罗忠. 基于版本更新日志的移动应用演化趋势自动分析. 计算机研究与发展. 2021(04): 763-776 . 本站查看
    15. 田丽. 算法推荐的实践与认知研究. 青年记者. 2021(21): 9-11 .

    Other cited types(26)

Catalog

    Article views (1371) PDF downloads (833) Cited by(41)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return