• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cui Yuanning, Li Jing, Shen Li, Shen Yang, Qiao Lin, Bo Jue. Duration-HyTE: A Time-Aware Knowledge Representation Learning Method Based on Duration Modeling[J]. Journal of Computer Research and Development, 2020, 57(6): 1239-1251. DOI: 10.7544/issn1000-1239.2020.20190253
Citation: Cui Yuanning, Li Jing, Shen Li, Shen Yang, Qiao Lin, Bo Jue. Duration-HyTE: A Time-Aware Knowledge Representation Learning Method Based on Duration Modeling[J]. Journal of Computer Research and Development, 2020, 57(6): 1239-1251. DOI: 10.7544/issn1000-1239.2020.20190253

Duration-HyTE: A Time-Aware Knowledge Representation Learning Method Based on Duration Modeling

Funds: This work was supported by the State Grid Corporation Headquarters Science and Technology Project (SGLNXT00YJJS1800110).
More Information
  • Published Date: May 31, 2020
  • Knowledge representation learning is the foundation of knowledge acquisition and reasoning. It is widely used in entity extraction, entity alignment, recommendation system and other fields. It has become an important issue throughout the whole process of knowledge graph construction and application. With the development of large-scale knowledge graphs containing time labels, time-aware knowledge representation learning has become one of the research hotspots in this field in recent years. Traditional time-aware knowledge representation learning methods can not effectively use the distribution of knowledge valid duration. In this paper, we propose an improved time-aware knowledge representation learning method combined hyperplane model and duration modeling to solve this problem. Firstly, we divide meta facts into persistent facts and instantaneous facts according to their valid duration. Then we model the valid duration of knowledge, so we get the calculation method of valid reliability. Finally, we propose a new knowledge representation learning method by improving score function with valid reliability. Wikidata12K and YAGO11K are two knowledge graph data sets containing time labels. We extract two new persistent facts datasets from these two datasets. We do a series of comparative experiments on these four data sets. The results show that Duration-HyTE method of link prediction and time prediction performance has been effectively promoted. Especially on Wikidata12K dataset, the accuracy of link prediction of the head entity and tail entity of the Duration-HyTE method is improved by 25.7% and 35.8% respectively compared with other traditional and advanced knowledge representation methods.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (1119) PDF downloads (436) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return