• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Rui, Li Jintao. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(4): 859-875. DOI: 10.7544/issn1000-1239.2020.20190513
Citation: Zhang Rui, Li Jintao. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(4): 859-875. DOI: 10.7544/issn1000-1239.2020.20190513

A Survey on Algorithm Research of Scene Parsing Based on Deep Learning

Funds: This work was supported by the National Key Research and Development Program of China (2017YFA0700900, 2017YFA0700902, 2017YFA0700901, 2017YFB1003101), the National Natural Science Foundation of China (61432016, 61532016, 61672491, 61602441, 61602446, 61732002, 61702478, 61732007, 61732020), the Beijing Natural Science Foundation (JQ18013), the National Basic Research Program of China (973 Program) (2015CB358800), the National Science and Technology Major Projects of Hegaoji (2018ZX01031102), the Transformation and Transfer of Scientific and Technological Achievements of Chinese Academy of Sciences (KFJ-HGZX-013), the Key Research Projects in Frontier Science of Chinese Academy of Sciences (QYZDB-SSW-JSC001), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB32050200, XDC01020000), and the Standardization Research Project of Chinese Academy of Sciences (BZ201800001).
More Information
  • Published Date: March 31, 2020
  • Scene parsing aims to predict the category of each pixel in a scene image. Scene parsing is a fundamental and important task in computer vision. It has great significance of analyzing and understanding scene images, and has a wide range of applications in many fields such as automatic driving, video surveillance, and augmented reality. Recently, scene parsing algorithm based on deep learning has a breakthrough, and achieves great improvement compared with the traditional scene parsing algorithms. In this survey, we firstly analyze and describe the three difficulties in scene parsing, including fine-grained parsing results, multiple scale deformations, and strong spatial relationships. Then we focus on the “convolutional-deconvolutional” framework which is widely used in most of the deep learning based scene parsing algorithms. Furthermore, we introduce the newly proposed scene parsing algorithm based on deep learning in recent years. To tackle the three difficulties in scene parsing, the recent deep learning based algorithms employ high-resolution feature maps, multi-scale information and contextual information to further improve the performance of scene parsing. After that, we briefly introduce the common public scene parsing datasets. Finally, we make the conclusion for scene parsing algorithm based on deep learning and point out some potential opportunities.
  • Related Articles

    [1]Ma Shuai, Liu Jianwei, Zuo Xin. Survey on Graph Neural Network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80. DOI: 10.7544/issn1000-1239.20201055
    [2]Liu Yanxiao, Wu Ping, Sun Qindong. Secret Image Sharing Schemes Based on Region Convolution Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1065-1074. DOI: 10.7544/issn1000-1239.2021.20200898
    [3]Xing Xinying, Ji Junzhong, Yao Yao. Brain Networks Classification Based on an Adaptive Multi-Task Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1449-1459. DOI: 10.7544/issn1000-1239.2020.20190186
    [4]Peng Tianqiang, Sun Xiaofeng, Li Fang. Middle or Small Object Retrieval Based on Fully Convolutional Networks[J]. Journal of Computer Research and Development, 2018, 55(12): 2775-2784. DOI: 10.7544/issn1000-1239.2018.20170581
    [5]Zhong Zhiquan, Yuan Jin, Tang Xiaoying. Left-vs-Right Eye Discrimination Based on Convolutional Neural Network[J]. Journal of Computer Research and Development, 2018, 55(8): 1667-1673. DOI: 10.7544/issn1000-1239.2018.20180215
    [6]Zhou Yucong, Liu Yi, Wang Rui. Training Deep Neural Networks for Image Applications with Noisy Labels by Complementary Learning[J]. Journal of Computer Research and Development, 2017, 54(12): 2649-2659. DOI: 10.7544/issn1000-1239.2017.20170637
    [7]Wang Peiqi, Gao Yuan, Liu Zhenyu, Wang Haixia, Wang Dongsheng. A Comparison Among Different Numeric Representations in Deep Convolution Neural Networks[J]. Journal of Computer Research and Development, 2017, 54(6): 1348-1356. DOI: 10.7544/issn1000-1239.2017.20170098
    [8]Zhang Lei, Zhang Yi. Big Data Analysis by Infinite Deep Neural Networks[J]. Journal of Computer Research and Development, 2016, 53(1): 68-79. DOI: 10.7544/issn1000-1239.2016.20150663
    [9]Lü Guohao, Luo Siwei, Huang Yaping, Jiang Xinlan. A Novel Regularization Method Based on Convolution Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891-1900. DOI: 10.7544/issn1000-1239.2014.20140266
    [10]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
  • Cited by

    Periodical cited type(23)

    1. 张攀,郭文鹏. 基于改进DQN模型的目标区域消减算法. 内江师范学院学报. 2024(02): 58-63 .
    2. 陈鲁威,曾锦,袁全春,夏烨,潘健,吕晓兰. 基于改进DeepLabV3+的梨树冠层分割方法. 中国农机化学报. 2024(04): 155-161 .
    3. 王静,余顺园. 基于改进SLIC算法的超像素图像分割及参数优化. 自动化技术与应用. 2024(05): 67-69+167 .
    4. 聂刚刚,饶洪辉,李泽锋,刘木华. 基于改进YOLACT的油茶叶片炭疽病感染严重程度分级模型. 智慧农业(中英文). 2024(03): 138-147 .
    5. 龚良雄,谢仁平,王红根,刘传瑞. 顾及交叉注意力的高分辨率遥感影像果园分割算法. 地理空间信息. 2024(12): 60-64 .
    6. 何雪东,宣士斌,王款,陈梦楠. 融合累积分布函数和通道注意力机制的DeepLabV3+图像分割算法. 计算机应用. 2023(03): 936-942 .
    7. 徐国保,麦锐滔,叶昌鑫,姚旭,刘洺辛. 用于自动驾驶的轻量级语义分割神经网络. 计算机工程与应用. 2023(10): 328-334 .
    8. 崔子良,句媛媛,刘冬冬,戴琳,肖清泰. 基于深度卷积神经网络的气液两相流图像分割方法. 计算机应用. 2023(S1): 217-223 .
    9. 张江峰,闫涛,王克琪,钱宇华,吴鹏. 多景深图像聚焦信息的三维形貌重建:数据集与模型. 计算机学报. 2023(08): 1734-1752 .
    10. 叶钊,李学伟,刘宏哲,徐成. 基于递归特征金字塔的UPSNet全景分割应用研究. 计算机应用与软件. 2023(08): 228-234 .
    11. 张强,杨吉斌,张雄伟,曹铁勇,郑昌艳. CS-Softmax:一种基于余弦相似性的Softmax损失函数. 计算机研究与发展. 2022(04): 936-949 . 本站查看
    12. 陈晋音,吴长安,郑海斌. 基于softmax激活变换的对抗防御方法. 网络与信息安全学报. 2022(02): 48-63 .
    13. 李娇娇,孙红岩,董雨,张若晗,孙晓鹏. 基于深度学习的3维点云处理综述. 计算机研究与发展. 2022(05): 1160-1179 . 本站查看
    14. 郭昕刚,王佳,程超. 层次聚类算法和基于图的分割算法相融合的图像分割算法. 国防科技大学学报. 2022(03): 194-200 .
    15. 张灵西. 基于拓扑结构约束和特征增强的医学影像标志点定位算法. 计算机系统应用. 2022(09): 173-182 .
    16. 孟俊熙,张莉,曹洋,张乐天,宋倩. 基于Deeplab v3+的图像语义分割算法优化研究. 激光与光电子学进展. 2022(16): 161-170 .
    17. 吴昊,王浩,苏醒,李明昊,许封元,仲盛. 自动驾驶系统中视觉感知模块的安全测试. 计算机研究与发展. 2022(05): 1133-1147 . 本站查看
    18. 白又达,刘纪平,黄龙,白敬辉,车向红. 面向地图图片识别的两种卷积神经网络分析. 测绘科学. 2021(11): 126-134 .
    19. 刘彤彤,杨环,西永明,郭建伟,潘振宽,黄宝香. 机器学习在脊柱疾病智能诊治中的应用综述. 计算机科学. 2021(S2): 597-607 .
    20. 赖心瑜,陈思,严严,王大寒,朱顺痣. 基于深度学习的人脸属性识别方法综述. 计算机研究与发展. 2021(12): 2760-2782 . 本站查看
    21. 霍占强,王勇杰,雒芬,乔应旭. 基于超点图网络的三维点云室内场景分割模型. 计算机工程. 2021(12): 308-315 .
    22. 孙艺航,潘欣. 一种海量图片样本数据的存储与抽取系统设计. 机电信息. 2020(26): 123-125 .
    23. 陈力,丁世飞,于文家. 基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络. 计算机应用. 2020(12): 3451-3457 .

    Other cited types(54)

Catalog

    Article views (2480) PDF downloads (1110) Cited by(77)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return