• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565
Citation: Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565

Efficient Index and Query Algorithm Based on Geospatial Big Data

Funds: This work was supported by the National Natural Science Foundation of China (61702357, 61672377), the Shenzhen Science and Technology Foundation (JCYJ20170816093943197), the Natural Science Foundation of Tianjin (18JCQNJC00300), and the Beiyang Scholar Foundation of Tianjin University (2019XRG-0004).
More Information
  • Published Date: January 31, 2020
  • In recent years, with the rapid development of advanced technologies such as intelligent target recognition, electronic sensors, collaborative control and computer networks, intelligent transportation systems have achieved qualitative leapfrogging. Modern intelligent transportation systems can realize intelligent transportation of vehicles, roads and clouds management platform. However, the intelligent transportation system relies on a large amount of two-dimensional geospatial information data generated every day. Therefore, how to efficiently store and query large-scale geospatial data is of great significance for the future popularization and development of the intelligent transportation system. However, due to the complexity of urban traffic information, large amount of data, and fast update speed, the current spatial indexing technology is difficult to efficiently search for two-dimensional geospatial information data. In order to optimize the storage organization structure of two-dimensional geospatial information data under spatial big data and improve retrieval efficiency, this paper proposes a spatial index tree construction algorithm for multi-layer slice recursion of two-dimensional geospatial information data (multi-layer slice recursive, MSR). The proposed algorithm first sorts and divides the first dimension of the map data to generate FD slices. Then, the second dimension of the map data in the FD slice is sorted to generate SD slices, and in the SD slice, the current slice and the adjacent slices are divided into spatial objects. Finally, data clustering operation is performed on the comparison between the length of the spatial object and the node capacity, and the MSR Tree is recursively generated from the bottom up by judging whether all the slices complete the clustering operation. Experimental results show that the query performance of the 2-dimensional space storage structure constructed by the MSR algorithm is better than the most representative spatial indexing technology based on the R-tree batch-loading algorithm (sort tile recursive, STR), STR-grid hybrid algorithm (str-grid), and efficient geometric range query (EGRQ).
  • Related Articles

    [1]Zhang Wenjun, Jiang Liangxiao, Zhang Huan, Chen Long. A Two-Layer Bayes Model: Random Forest Naive Bayes[J]. Journal of Computer Research and Development, 2021, 58(9): 2040-2051. DOI: 10.7544/issn1000-1239.2021.20200521
    [2]Wang Fei, Yue Kun, Sun Zhengbao, Wu Hao, Feng Hui. Analyzing Rating Data and Modeling Dynamic Behaviors of Users Based on the Bayesian Network[J]. Journal of Computer Research and Development, 2017, 54(7): 1488-1499. DOI: 10.7544/issn1000-1239.2017.20160556
    [3]Zhu Kenan, Yin Baolin, Mao Yaming, Hu Yingnan. Malware Classification Approach Based on Valid Window and Naive Bayes[J]. Journal of Computer Research and Development, 2014, 51(2): 373-381.
    [4]Wang Mei, Liao Shizhong. Three-Step Bayesian Combination of SVM on Regularization Path[J]. Journal of Computer Research and Development, 2013, 50(9): 1855-1864.
    [5]Si Guannan, Ren Yuhan, Xu Jing, and Yang Jufeng. A Dependability Evaluation Model for Internetware Based on Bayesian Network[J]. Journal of Computer Research and Development, 2012, 49(5): 1028-1038.
    [6]Tian Junfeng and Tian Rui. A Fine-Grain Trust Model Based on Domain and Bayesian Network for P2P E-Commerce System[J]. Journal of Computer Research and Development, 2011, 48(6): 974-982.
    [7]Zhu Mingfang, Tang Changjie, Dai Shucheng, Chen Yu, Qiao Shaojie, Xiang Yong. Nave Gene Expression Programming Based on Genetic Neutrality[J]. Journal of Computer Research and Development, 2010, 47(2): 292-299.
    [8]Qian Ning, Wu Guoxin, and Zhao Shenghui. A Bayesian Network-Based Search Method in Unstructured Peer-to-Peer Networks[J]. Journal of Computer Research and Development, 2009, 46(6): 889-897.
    [9]Miao Duoqian, Wang Ruizhi, and Ran Wei. A Dynamic Bayesian Network Based Framework for Continuous Speech Recognition and its Token Passing Model[J]. Journal of Computer Research and Development, 2008, 45(11): 1882-1891.
    [10]Xu Junming, Jiang Yuan, and Zhou Zhihua. Bayesian Classifier Based on Frequent Item Sets Mining[J]. Journal of Computer Research and Development, 2007, 44(8): 1293-1300.

Catalog

    Article views (1202) PDF downloads (799) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return