• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565
Citation: Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565

Efficient Index and Query Algorithm Based on Geospatial Big Data

Funds: This work was supported by the National Natural Science Foundation of China (61702357, 61672377), the Shenzhen Science and Technology Foundation (JCYJ20170816093943197), the Natural Science Foundation of Tianjin (18JCQNJC00300), and the Beiyang Scholar Foundation of Tianjin University (2019XRG-0004).
More Information
  • Published Date: January 31, 2020
  • In recent years, with the rapid development of advanced technologies such as intelligent target recognition, electronic sensors, collaborative control and computer networks, intelligent transportation systems have achieved qualitative leapfrogging. Modern intelligent transportation systems can realize intelligent transportation of vehicles, roads and clouds management platform. However, the intelligent transportation system relies on a large amount of two-dimensional geospatial information data generated every day. Therefore, how to efficiently store and query large-scale geospatial data is of great significance for the future popularization and development of the intelligent transportation system. However, due to the complexity of urban traffic information, large amount of data, and fast update speed, the current spatial indexing technology is difficult to efficiently search for two-dimensional geospatial information data. In order to optimize the storage organization structure of two-dimensional geospatial information data under spatial big data and improve retrieval efficiency, this paper proposes a spatial index tree construction algorithm for multi-layer slice recursion of two-dimensional geospatial information data (multi-layer slice recursive, MSR). The proposed algorithm first sorts and divides the first dimension of the map data to generate FD slices. Then, the second dimension of the map data in the FD slice is sorted to generate SD slices, and in the SD slice, the current slice and the adjacent slices are divided into spatial objects. Finally, data clustering operation is performed on the comparison between the length of the spatial object and the node capacity, and the MSR Tree is recursively generated from the bottom up by judging whether all the slices complete the clustering operation. Experimental results show that the query performance of the 2-dimensional space storage structure constructed by the MSR algorithm is better than the most representative spatial indexing technology based on the R-tree batch-loading algorithm (sort tile recursive, STR), STR-grid hybrid algorithm (str-grid), and efficient geometric range query (EGRQ).
  • Related Articles

    [1]Yue Wenjing, Qu Wenwen, Lin Kuan, Wang Xiaoling. Survey of Cardinality Estimation Techniques Based on Machine Learning[J]. Journal of Computer Research and Development, 2024, 61(2): 413-427. DOI: 10.7544/issn1000-1239.202220649
    [2]Cao Yiran, Zhu Youwen, He Xingyu, Zhang Yue. Utility-Optimized Local Differential Privacy Set-Valued Data Frequency Estimation Mechanism[J]. Journal of Computer Research and Development, 2022, 59(10): 2261-2274. DOI: 10.7544/issn1000-1239.20220504
    [3]Ying Chenhao, Xia Fuyuan, Li Jie, Si Xueming, Luo Yuan. Incentive Mechanism Based on Truth Estimation of Private Data for Blockchain-Based Mobile Crowdsensing[J]. Journal of Computer Research and Development, 2022, 59(10): 2212-2232. DOI: 10.7544/issn1000-1239.20220493
    [4]Zhu Suxia, Wang Lei, Sun Guanglu. A Perturbation Mechanism for Classified Transformation Satisfying Local Differential Privacy[J]. Journal of Computer Research and Development, 2022, 59(2): 430-439. DOI: 10.7544/issn1000-1239.20200717
    [5]Xu Min, Deng Zhaohong, Wang Shitong, Shi Yingzhong. MMCKDE: m-Mixed Clustering Kernel Density Estimation over Data Streams[J]. Journal of Computer Research and Development, 2014, 51(10): 2277-2294. DOI: 10.7544/issn1000-1239.2014.20130718
    [6]Bai Heng, Gao Yurui, Wang Shijie, and Luo Limin. A Robust Diffusion Tensor Estimation Method for DTI[J]. Journal of Computer Research and Development, 2008, 45(7): 1232-1238.
    [7]He Xiaoyang and Wang Yasha. Model-Based Methods for Software Cost Estimation[J]. Journal of Computer Research and Development, 2006, 43(5): 777-783.
    [8]Wang Yu, Meng Xiaofeng, Wang Shan. Using Histograms to Estimate the Selectivity of XPath Expression with Value Predicates[J]. Journal of Computer Research and Development, 2006, 43(2): 288-294.
    [9]Liu Bo, Wang Zhensong, Yao Ping, Li Mingfeng. A Novel Real-Time Doppler Centroid Estimating Algorithm[J]. Journal of Computer Research and Development, 2005, 42(11): 1911-1917.
    [10]Wang Zhiming, Cai Lianhong, Ai Haizhou. Automatic Estimation of Visual Speech Parameters[J]. Journal of Computer Research and Development, 2005, 42(7): 1185-1190.

Catalog

    Article views (1233) PDF downloads (802) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return