• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565
Citation: Zhao Huihui, Zhao Fan, Chen Renhai, Feng Zhiyong. Efficient Index and Query Algorithm Based on Geospatial Big Data[J]. Journal of Computer Research and Development, 2020, 57(2): 333-345. DOI: 10.7544/issn1000-1239.2020.20190565

Efficient Index and Query Algorithm Based on Geospatial Big Data

Funds: This work was supported by the National Natural Science Foundation of China (61702357, 61672377), the Shenzhen Science and Technology Foundation (JCYJ20170816093943197), the Natural Science Foundation of Tianjin (18JCQNJC00300), and the Beiyang Scholar Foundation of Tianjin University (2019XRG-0004).
More Information
  • Published Date: January 31, 2020
  • In recent years, with the rapid development of advanced technologies such as intelligent target recognition, electronic sensors, collaborative control and computer networks, intelligent transportation systems have achieved qualitative leapfrogging. Modern intelligent transportation systems can realize intelligent transportation of vehicles, roads and clouds management platform. However, the intelligent transportation system relies on a large amount of two-dimensional geospatial information data generated every day. Therefore, how to efficiently store and query large-scale geospatial data is of great significance for the future popularization and development of the intelligent transportation system. However, due to the complexity of urban traffic information, large amount of data, and fast update speed, the current spatial indexing technology is difficult to efficiently search for two-dimensional geospatial information data. In order to optimize the storage organization structure of two-dimensional geospatial information data under spatial big data and improve retrieval efficiency, this paper proposes a spatial index tree construction algorithm for multi-layer slice recursion of two-dimensional geospatial information data (multi-layer slice recursive, MSR). The proposed algorithm first sorts and divides the first dimension of the map data to generate FD slices. Then, the second dimension of the map data in the FD slice is sorted to generate SD slices, and in the SD slice, the current slice and the adjacent slices are divided into spatial objects. Finally, data clustering operation is performed on the comparison between the length of the spatial object and the node capacity, and the MSR Tree is recursively generated from the bottom up by judging whether all the slices complete the clustering operation. Experimental results show that the query performance of the 2-dimensional space storage structure constructed by the MSR algorithm is better than the most representative spatial indexing technology based on the R-tree batch-loading algorithm (sort tile recursive, STR), STR-grid hybrid algorithm (str-grid), and efficient geometric range query (EGRQ).
  • Related Articles

    [1]Wang Qihong, Jia Hongjie, Huang Longxia, Mao Qirong. Semantic Contrastive Clustering with Federated Data Augmentation[J]. Journal of Computer Research and Development, 2024, 61(6): 1511-1524. DOI: 10.7544/issn1000-1239.202220995
    [2]Zhu Yingwen, Chen Songcan. High Dimensional Data Stream Clustering Algorithm Based on Random Projection[J]. Journal of Computer Research and Development, 2020, 57(8): 1683-1696. DOI: 10.7544/issn1000-1239.2020.20200432
    [3]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [4]Hou Wei, Dong Hongbin, Yin Guisheng. A Membership Degree Refinement-Based Evolutionary Clustering Algorithm[J]. Journal of Computer Research and Development, 2013, 50(3): 548-558.
    [5]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [6]Lü Zonglei, Wang Jiandong, Li Ying, and Zai Yunfeng. An Index of Cluster Validity Based on Modal Logic[J]. Journal of Computer Research and Development, 2008, 45(9): 1477-1485.
    [7]Zhang Gang, Liu Yue, Guo Jiafeng, and Cheng Xueqi. A Hierarchical Search Result Clustering Method[J]. Journal of Computer Research and Development, 2008, 45(3): 542-547.
    [8]Jin Yifu, Zhu Qingsheng, Xing Yongkang. An Algorithm for Clustering of Outliers Based on Key Attribute Subspace[J]. Journal of Computer Research and Development, 2007, 44(4): 651-659.
    [9]Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.
    [10]Duan Jiangjiao, Xue Yongsheng, Lin Ziyu, Wang Wei, Shi Baile. A Novel Hidden Markov Model-Based Hierarchical Time-Series Clustering Algorithm[J]. Journal of Computer Research and Development, 2006, 43(1): 61-67.
  • Cited by

    Periodical cited type(23)

    1. 王辉,张晓明,鲍丽芳,惠安,肖岚. 基于云存储的电子档案数据跨域安全检索算法研究. 集成电路与嵌入式系统. 2025(03): 66-72 .
    2. 李鹏,林显,曾旭川. 基于智能索引算法的集控设备事故辅助预警方法研究. 电子设计工程. 2024(05): 131-135 .
    3. 何远景,李光龙. 基于多级索引表的金融业务数据库精准查询方法. 安阳工学院学报. 2024(02): 60-64 .
    4. 苏蕊,王亚婷,闫润珍,王悦. 基于近似匹配模型的电网多模态数据检索研究. 电子设计工程. 2024(07): 153-157 .
    5. 蓝晓东,赵敏彤,黄欣,肖勇. 基于H型指数的AI多维知识地图信息检索研究. 自动化技术与应用. 2024(06): 112-115 .
    6. 窦雪倩,王文兵,刘美琪. 面向电磁态势的空间网格处理方法研究. 舰船电子对抗. 2024(05): 70-74 .
    7. 王永志,李逸清,康念坤,王宝娟,杨梦茜,陈健. 基于GIS的农地权属公示图自动生成方法. 苏州科技大学学报(自然科学版). 2024(04): 114-119 .
    8. 赖欣,梁昌盛,朱美玲. 基于时空数据模型的障碍物数据集数据查询与应用研究. 航空工程进展. 2023(01): 165-174 .
    9. 马芳平,李林,郭金婷,柳玉兰,徐镭梦. 基于粒子群算法的科技创新数据检索系统设计. 电子设计工程. 2023(15): 66-69+74 .
    10. 孙妍,张俊超,薛峪峰. 基于流量检测的目标大数据快速检索系统设计. 电子设计工程. 2023(17): 182-186 .
    11. 余豪东,陈玉明,吴克寿,韩锋钢. 决策粒K均值聚类算法. 闽南师范大学学报(自然科学版). 2023(03): 1-13 .
    12. 李雪琛,张齐. 开源网络空间大数据暴力破解攻击识别算法设计. 吉林大学学报(信息科学版). 2023(06): 1086-1092 .
    13. 胡媛媛,江春然,甘杜芬. 基于群体智能算法的大数据分布式存储方法. 计算机仿真. 2023(11): 447-451 .
    14. 方圆,王丽珍,王晓璇,杨培忠. 基于空间占有度的主导并置模式挖掘. 计算机研究与发展. 2022(02): 264-281 . 本站查看
    15. 蒋贞慧. 基于多层感知学习的工程档案大数据检索系统设计. 自动化与仪器仪表. 2022(02): 69-72 .
    16. 焦洋洋,刘平芝,熊顺,徐道柱. 基于自然格网索引的多尺度面实体增量级联更新方法. 地球信息科学学报. 2022(05): 851-863 .
    17. 王丹,王玫. 一种适用于内部信息统筹与服务对像信息快速检索仿真设计. 粘接. 2022(11): 169-173 .
    18. 杨凤丽,李娜,刘仁芬. 基于多级索引的高维数据近似最近邻搜索. 计算机仿真. 2022(11): 398-401 .
    19. 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法. 吉林大学学报(工学版). 2021(03): 1011-1016 .
    20. 陶建平,曹霞. 云环境下多核仿真平台虚拟任务数据索引. 计算机仿真. 2021(11): 389-393 .
    21. 李盼盼,赵浩,林慧恩. 基于相似树查询的隐私大数据定向检索算法. 计算机仿真. 2021(11): 429-432+437 .
    22. 陈伊玲. 基于地理空间大数据的复合空间索引. 测绘通报. 2021(S2): 276-279+284 .
    23. 廖芳芳,裴春营,李永峰. 基于最高层级的影像分布式切片技术研究. 计算机产品与流通. 2020(10): 38-39 .

    Other cited types(13)

Catalog

    Article views (1208) PDF downloads (799) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return