• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606
Citation: Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606

An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1003801), the National Natural Science Foundation of China (61832014, 61672387, 61572371), and the Natural Science Foundation of Hubei Province of China (2018CFB511).
More Information
  • Published Date: February 29, 2020
  • Software defect repair (also known as software bug fixing) is a necessary part of software quality assurance. In the collective-intelligence-based software development environment on the Internet, improving the efficiency and effectiveness of software bug triaging can help raise bug fixing rates and reduce maintenance costs. Nowadays, automatic bug triaging approaches based on machine learning have become mainstream, but they also have some specific problems, such as hand-crafted features and an insufficient ability to represent texts. Considering successful applications of deep learning in the field of natural language processing, researchers have recently tried to introduce deep learning into the field of automatic bug triaging, to improve the performance of predicting the right bug fixer significantly. However, different types of neural networks have their limitations. To address the problems mentioned above, in this study, we regard bug triaging as a text classification problem and propose an automatic bug triaging approach based on hybrid neural networks and an attention mechanism, called Atten-CRNN. Because Atten-CRNN combines the advantages of a convolutional neural network, a recurrent neural network, and an attention mechanism, it can capture essential text features and sequence features of bug reports more effectively and then provide more accurate fixer recommendation services for software development and maintenance. An empirical study was conducted on two popular large-scale open-source software projects, namely Eclipse and Mozilla. The experimental results obtained from over 200 000 bug reports indicate that Atten-CRNN achieves higher prediction accuracy than convolutional neural networks and recurrent neural networks, regardless of the attention mechanism.
  • Cited by

    Periodical cited type(15)

    1. 程宏伟,高莲,于虹,李鹏. 基于注意力机制优化组合神经网络的电力缺陷等级确定方法. 电测与仪表. 2024(01): 83-90+98 .
    2. 张国梁,杜泽旭,张屹,王博,陈江琦,张希. 面向电网设备缺陷识别的多模态感知模型的构建与优化. 人工智能科学与工程. 2024(03): 36-41 .
    3. 韦斯羽,朱广丽,谈光璞. 融合Text-CNN与注意力机制的特产小吃评论情感分析. 阜阳师范大学学报(自然科学版). 2023(01): 57-63 .
    4. 王强,周金宇,金超武. 基于风险轨迹的开源软件安全性缺陷定位方法. 计算机仿真. 2023(07): 397-401 .
    5. 常志鹏,马生忠. 基于排序集成的软件并发缺陷动态预测算法. 计算机仿真. 2023(11): 423-427 .
    6. 曲海成,佟畅,刘万军. 注意力与多尺度融合的图像阴影去除算法. 计算机工程与应用. 2022(16): 234-241 .
    7. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    8. 朱广丽,谈光璞,张顺香,韦斯羽. 融合双向切片LSTM与Attention的情感分类模型. 安徽理工大学学报(自然科学版). 2022(05): 85-93 .
    9. 马辉. 基于改进神经网络的静态软件缺陷自动分配方法. 信息与电脑(理论版). 2021(04): 68-70 .
    10. 王慧娇,丛鹏,蒋华,韦永壮. 基于深度学习的SIMON32/64安全性分析. 计算机研究与发展. 2021(05): 1056-1064 . 本站查看
    11. 朱会娟,陈锦富,李致远,殷尚男. 基于多特征自适应融合的区块链异常交易检测方法. 通信学报. 2021(05): 41-50 .
    12. 潘长安. 基于加权马尔可夫链的试运行软件缺陷预测模型. 巢湖学院学报. 2021(03): 55-60 .
    13. 刘万军,佟畅,曲海成. 空洞卷积与注意力融合的对抗式图像阴影去除算法. 智能系统学报. 2021(06): 1081-1089 .
    14. 万发洋,于旭,徐其江. 基于多头自注意力机制的深度缺陷分派模型. 计算机与现代化. 2021(11): 39-43 .
    15. 张鑫波. 基于高端科技的计算机软件开发技术研究. 信息与电脑(理论版). 2021(22): 140-142 .

    Other cited types(20)

Catalog

    Article views (1246) PDF downloads (607) Cited by(35)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return