• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
Citation: Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643

Iterative Entity Alignment via Re-Ranking

Funds: This work was supported by the National Natural Science Foundation of China (61872446, 61902417, 71690233, 71971212), the Natural Science Foundation of Hunan Province of China (2019JJ20024), and the Postgraduate Scientific Research Innovation Project of Hunan Province (CX20190033).
More Information
  • Published Date: June 30, 2020
  • Existing knowledge graphs (KGs) inevitably suffer from the problem of incompleteness. One feasible approach to tackle this issue is by introducing knowledge from other KGs. During the process of knowledge integration, entity alignment (EA), which aims to find equivalent entities in different KGs, is the most crucial step, as entities are the pivots that connect heterogeneous KGs. State-of-the-art EA solutions mainly rely on KG structure information for judging the equivalence of entities, whereas most entities in real-life KGs are in low degrees and contain limited structural information. Additionally, the lack of supervision signals also constrains the effectiveness of EA models. In order to tackle aforementioned issues, we propose to combine entity name information, which is not affected by entity degree, with structural information, to convey more comprehensive signals for aligning entities. Upon this basic EA framework, we further devise a curriculum learning based iterative training strategy to increase the scale of labelled data with confident EA pairs selected from the results of each round. Moreover, we exploit word mover’s distance model to optimize the utilization of entity name information and re-rank alignment results, which in turn boosts the accuracy of EA. We evaluate our proposal on both cross-lingual and mono-lingual EA tasks against strong existing methods, and the experimental results reveal that our solution outperforms the state-of-the-arts by a large margin.
  • Related Articles

    [1]Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
    [2]Du Jinming, Sun Yuanyuan, Lin Hongfei, Yang Liang. Conversational Emotion Recognition Incorporating Knowledge Graph and Curriculum Learning[J]. Journal of Computer Research and Development, 2024, 61(5): 1299-1309. DOI: 10.7544/issn1000-1239.202220951
    [3]He Peng, Zhou Gang, Chen Jing, Zhang Mengli, Ning Yuanlong. Type-Enhanced Temporal Knowledge Graph Representation Learning Model[J]. Journal of Computer Research and Development, 2023, 60(4): 916-929. DOI: 10.7544/issn1000-1239.202111246
    [4]Hu Xuyang, Wang Zhizheng, Sun Yuanyuan, Xu Bo, Lin Hongfei. Knowledge Graph Representation Method Combined with Semantic Parsing[J]. Journal of Computer Research and Development, 2022, 59(12): 2878-2888. DOI: 10.7544/issn1000-1239.20210849
    [5]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [6]Wang Meng, Wang Haofen, Li Bohan, Zhao Xiang, Wang Xin. Survey on Key Technologies of New Generation Knowledge Graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. DOI: 10.7544/issn1000-1239.20210829
    [7]Ma Ang, Yu Yanhua, Yang Shengli, Shi Chuan, Li Jie, Cai Xiuxiu. Survey of Knowledge Graph Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. DOI: 10.7544/issn1000-1239.20211264
    [8]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [9]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [10]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
  • Cited by

    Periodical cited type(10)

    1. 杜金明,孙媛媛,林鸿飞,杨亮. 融入知识图谱和课程学习的对话情绪识别. 计算机研究与发展. 2024(05): 1299-1309 . 本站查看
    2. 纪鑫,武同心,王宏刚,杨智伟,何禹德,赵晓龙. 基于多通道图神经网络的属性聚合式实体对齐. 北京航空航天大学学报. 2024(09): 2791-2799 .
    3. 陈富强,寇嘉敏,苏利敏,李克. 基于图神经网络的多信息优化实体对齐模型. 计算机科学. 2023(03): 34-41 .
    4. 刘璐,飞龙,高光来. 基于多视图知识表示和神经网络的旅游领域实体对齐方法. 计算机应用研究. 2023(04): 1044-1051 .
    5. 安靖,司光亚,周杰,韩旭. 基于知识图谱的仿真想定智能生成方法. 指挥与控制学报. 2023(01): 103-109 .
    6. 孙泽群,崔员宁,胡伟. 基于链接实体回放的多源知识图谱终身表示学习. 软件学报. 2023(10): 4501-4517 .
    7. 时慧芳. 融合高速路门机制的跨语言实体对齐研究. 现代电子技术. 2023(20): 167-172 .
    8. 张富,杨琳艳,李健伟,程经纬. 实体对齐研究综述. 计算机学报. 2022(06): 1195-1225 .
    9. 姜亚莉,戴齐,刘捷. 基于交叉图匹配和双向自适应迭代的实体对齐. 信息与电脑(理论版). 2022(20): 201-204 .
    10. 王小鹏. 基于知识图谱的择优分段迭代式实体对齐方法研究. 信息与电脑(理论版). 2021(18): 48-52 .

    Other cited types(15)

Catalog

    Article views (1132) PDF downloads (366) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return