• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xia Dongxue, Yang Yan, Wang Hao, Yang Shuhong. Late Fusion Multi-View Clustering Based on Local Multi-Kernel Learning[J]. Journal of Computer Research and Development, 2020, 57(8): 1627-1638. DOI: 10.7544/issn1000-1239.2020.20200212
Citation: Xia Dongxue, Yang Yan, Wang Hao, Yang Shuhong. Late Fusion Multi-View Clustering Based on Local Multi-Kernel Learning[J]. Journal of Computer Research and Development, 2020, 57(8): 1627-1638. DOI: 10.7544/issn1000-1239.2020.20200212

Late Fusion Multi-View Clustering Based on Local Multi-Kernel Learning

Funds: This work was supported by the National Natural Science Foundation of China (61976247, 61572407).
More Information
  • Published Date: July 31, 2020
  • Graph-based multi-view clustering is one of the representative methods in that field. However, existing models still have problems as following. First, most of them do not consider the difference of clustering capacity among different views and force all views to share a common similarity graph. Next, some models construct the similarity graph and conduct clustering in separated steps, resulting in the constructed similarity graph is not optimal for the following clustering tasks. Finally, although there are many models using kernel learning to deal with the nonlinear relationship between data points, most of them calculate the self-expressive relationship in kernel space based on global models. Such global schemes are not conducive to fully explore local nonlinear relationship, and easy to bring about heavy computing load. Therefore, this paper proposes a late fusion multi-view clustering model based on local multi-kernel learning. We implement information fusion at the level of class partition space rather than similarity graph, and adopt local multi-kernel learning scheme to fully preserve the local nonlinear relationship as well as reduce the computational load. We also propose an alternative optimization scheme to solve the construction of similarity graph, combination of multi-kernel and generation of class indicator matrix in a unified framework. Experiments on multiple datasets show that the proposed method has good multi-view clustering effect.
  • Cited by

    Periodical cited type(12)

    1. 辛永杰,蔡江辉,贺艳婷,苏美红,史晨辉,杨海峰. 基于跨结构特征选择和图循环自适应学习的多视图聚类. 计算机科学. 2025(02): 145-157 .
    2. 张瑛. 基于改进松弛嵌入空间的多视图聚类. 计算机应用与软件. 2024(04): 275-283 .
    3. 赵兴旺,王淑君,刘晓琳,梁吉业. 基于二部图的联合谱嵌入多视图聚类算法. 软件学报. 2024(09): 4408-4424 .
    4. 王静怡,王鹏,范越,李芳菲,郭庆启. 大数据分析皮诺敛酸研究现状及发展趋势. 食品工业. 2023(03): 239-243 .
    5. 劳景欢,黄栋,王昌栋,赖剑煌. 基于视图互信息加权的多视图集成聚类算法. 计算机应用. 2023(06): 1713-1718 .
    6. 杨凡,饶雨泰. 基于双向稀疏的多视图子空间学习算法. 计算机应用与软件. 2023(06): 266-275 .
    7. 倪团雄,洪智勇,余文华,张昕. 基于卷积注意力和对比学习的多视图聚类. 计算机技术与发展. 2023(08): 59-65 .
    8. 刘怡俊,王嘉达,钟仕杰,杨晓君,叶武剑. 基于统一标签矩阵的快速多视图聚类. 华南理工大学学报(自然科学版). 2023(09): 110-119+138 .
    9. 刘晓琳,白亮,赵兴旺,梁吉业. 基于多阶近邻融合的不完整多视图聚类算法. 软件学报. 2022(04): 1354-1372 .
    10. 梁吉业,刘晓琳. 多视图聚类研究进展与展望. 山西大学学报(自然科学版). 2022(03): 612-621 .
    11. 程学军,王建平. 基于图形正则化低秩表示张量与亲和矩阵的多视图聚类. 吉林大学学报(理学版). 2022(03): 671-684 .
    12. 于晓,刘慧,林毓秀,张彩明. 一致性引导的自适应加权多视图聚类. 计算机研究与发展. 2022(07): 1496-1508 . 本站查看

    Other cited types(19)

Catalog

    Article views (1119) PDF downloads (554) Cited by(31)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return