• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
Citation: Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219

Adaptive Neighborhood Embedding Based Unsupervised Feature Selection

Funds: This work was supported by the National Key Research and Development Program of China (2017YFB0702600, 2017YFB0702601), the National Natural Science Foundation of China (61806096), the Education Scientific Research Project of Young Teachers of Fujian Province (JAT170577, JAT190743), and the Science and Technology Project of Longyan City (2019LYF13002).
More Information
  • Published Date: July 31, 2020
  • Unsupervised feature selection algorithms can effectively reduce the dimensionality of high-dimensional unmarked data, which not only reduce the time and space complexity of data processing, but also avoid the over-fitting phenomenon of the feature selection model. However, most of the existing unsupervised feature selection algorithms use k-nearest neighbor method to capture the local geometric structure of data samples, ignoring the problem of uneven data distribution. To solve this problem, an unsupervised feature selection algorithm based on adaptive neighborhood embedding (ANEFS) is proposed. The algorithm determines the number of neighbors of samples according to the distribution of datasets, and then constructs similarity matrix. Meanwhile, a mid-matrix is introduced which maps from high-dimensional space to low-dimensional space, and Laplacian multiplier method is used to optimize the reconstructed function. The experimental results of six UCI datasets show that the proposed algorithm can select representative feature subsets which have higher clustering accuracy and normalize mutual information.
  • Related Articles

    [1]Li Kunze, Zhang Yu. Adaptive Pipeline Unsupervised Question Generation Method[J]. Journal of Computer Research and Development, 2025, 62(4): 905-914. DOI: 10.7544/issn1000-1239.202330857
    [2]Chen Xinhai, Peng Jiaming, Qiao Peng, Jia Menghan, Wang Qinglin, Zhang Xiang, Yang Bo, Liu Jie. An Intelligent Parallel Structured Mesh Generation Framework Based on Unsupervised Learning[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202550134
    [3]Chen Liwen, Ye Feng, Huang Tianqiang, Huang Liqing, Weng Bin, Xu Chao, Hu Jie. An Unsupervised Person Re-Identification Method Based on Intra-/Inter-Camera Merger[J]. Journal of Computer Research and Development, 2023, 60(2): 415-425. DOI: 10.7544/issn1000-1239.202110732
    [4]Zhang Hao, Wu Jianxin. A Survey on Unsupervised Image Retrieval Using Deep Features[J]. Journal of Computer Research and Development, 2018, 55(9): 1829-1842. DOI: 10.7544/issn1000-1239.2018.20180058
    [5]Wang Jun, Wei Jinmao, Zhang Lu. Multi-Task Feature Learning Algorithm Based on Preserving Classification Information[J]. Journal of Computer Research and Development, 2017, 54(3): 537-548. DOI: 10.7544/issn1000-1239.2017.20150963
    [6]Liang Peng, Li Shaofa, Wang Cheng. A New Unsupervised Foreground Object Detection Method[J]. Journal of Computer Research and Development, 2012, 49(8): 1721-1729.
    [7]Xu Junling, Zhou Yuming, Chen Lin, Xu Baowen. An Unsupervised Feature Selection Approach Based on Mutual Information[J]. Journal of Computer Research and Development, 2012, 49(2): 372-382.
    [8]Zhan Yubin, Yin Jianping, Liu Xinwang, Zhang Guomin. Adaptive Neighborhood Selection Based on Local Linearity for Manifold Learning[J]. Journal of Computer Research and Development, 2011, 48(4): 576-583.
    [9]Hou Chenping, Wu Yi, and Yi Dongyun. A Novel Unified Manifold Learning Framework and an Improved Laplacian Eigenmap[J]. Journal of Computer Research and Development, 2009, 46(4): 676-682.
    [10]Liu Tao, Wu Gongyi, Chen Zheng. An Effective Unsupervised Feature Selection Method for Text Clustering[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(10)

    1. 汪廷华,胡振威,占宏祥. 一种新颖的无监督特征选择方法. 山东大学学报(理学版). 2024(12): 130-140 .
    2. 杨鹏飞,陈梅,张忠帅,陈永旭. 自适应邻居和图正则的表示学习. 小型微型计算机系统. 2023(03): 553-559 .
    3. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 .
    4. 朱建勇,李兆祥,徐彬,杨辉,聂飞平. 基于图嵌入的正交局部保持投影无监督特征选择. 计算机科学. 2023(S2): 552-560 .
    5. 樊星男,刘晓娟. 一种适用于轴承故障诊断的改进Mixup数据增强方法. 工程机械. 2022(04): 38-45+9 .
    6. 杨秀璋,宋籍文,武帅,廖文婧,任天舒,刘建义. 一种融合Bert预训练和BiLSTM的场景迁移情感分析研究. 计算机时代. 2022(08): 69-74+79 .
    7. 江兵兵,何文达,吴兴宇,项俊浩,洪立斌,盛伟国. 基于自适应图学习的半监督特征选择. 电子学报. 2022(07): 1643-1652 .
    8. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 .
    9. 张巍,张圳彬. 联合图嵌入与特征加权的无监督特征选择. 广东工业大学学报. 2021(05): 16-23 .
    10. 彭明,张继炎,王慧玲,黄宏昆,刘艳芳. 基于自适应邻域和自表示正则的无监督特征选择算法. 南京理工大学学报. 2021(04): 439-446 .

    Other cited types(23)

Catalog

    Article views (992) PDF downloads (489) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return