• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426
Citation: Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426

Security Issues and Privacy Preserving in Machine Learning

Funds: This work was supported by the National Natural Science Foundation of China (61972241, 61802248, 61672339), the Natural Science Foundation of Shanghai (18ZR1417300), and the Luo Zhaorao Science and Technology Innovation Fund of Shanghai Ocean University (A1-2004-20-201312).
More Information
  • Published Date: September 30, 2020
  • In recent years, machine learning has developed rapidly, and it is widely used in the aspects of work and life, which brings not only convenience but also great security risks. The security and privacy issues have become a stumbling block in the development of machine learning. The training and inference of the machine learning model are based on a large amount of data, which always contains some sensitive information. With the frequent occurrence of data privacy leakage events and the aggravation of the leakage scale annually, how to make sure the security and privacy of data has attracted the attention of the researchers from academy and industry. In this paper we introduce some fundamental concepts such as the adversary model in the privacy preserving of machine learning and summarize the common security threats and privacy threats in the training and inference phase of machine learning, such as privacy leakage of training data, poisoning attack, adversarial attack, privacy attack, etc. Subsequently, we introduce the common security protecting and privacy preserving methods, especially focusing on homomorphic encryption, secure multi-party computation, differential privacy, etc. and compare the typical schemes and applicable scenarios of the three technologies. At the end, the future development trend and research direction of machine learning privacy preserving are prospected.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [3]Diao Yiqing, Ye Ayong, Zhang Jiaomei, Deng Huina, Zhang Qiang, Cheng Baorong. A Dual Privacy Protection Method Based on Group Signature and Homomorphic Encryption for Alliance Blockchain[J]. Journal of Computer Research and Development, 2022, 59(1): 172-181. DOI: 10.7544/issn1000-1239.20200576
    [4]Wu Wanqing, Zhao Yongxin, Wang Qiao, Di Chaofan. A Safe Storage and Release Method of Trajectory Data Satisfying Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(11): 2430-2443. DOI: 10.7544/issn1000-1239.2021.20210589
    [5]Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
    [6]Guo Juanjuan, Wang Qiongxiao, Xu Xin, Wang Tianyu, Lin Jingqiang. Secure Multiparty Computation and Application in Machine Learning[J]. Journal of Computer Research and Development, 2021, 58(10): 2163-2186. DOI: 10.7544/issn1000-1239.2021.20210626
    [7]Xu Wenyu, Wu Lei, Yan Yunxue. Privacy-Preserving Scheme of Electronic Health Records Based on Blockchain and Homomorphic Encryption[J]. Journal of Computer Research and Development, 2018, 55(10): 2233-2243. DOI: 10.7544/issn1000-1239.2018.20180438
    [8]Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647
    [9]Zhang Xiaojian, Shao Chao, Meng Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. DOI: 10.7544/issn1000-1239.2016.20150304
    [10]Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824
  • Cited by

    Periodical cited type(18)

    1. 李红艳,徐寅森,张子栋. 蜂窝移动网络大数据聚类异常挖掘方法仿真. 计算机仿真. 2024(02): 406-409+414 .
    2. 程一帆,刘擎宇,梁泽宇,于昇. 严格可证明安全的两方协同SM2签名协议. 电子学报. 2024(02): 540-549 .
    3. 彭金辉,张志鸿. 面向软件的随机数发生器设计和实现. 计算机工程与设计. 2024(04): 1004-1010 .
    4. 涂彬彬,陈宇. 支持批量证明的SM2适配器签名及其分布式扩展. 软件学报. 2024(05): 2566-2582 .
    5. 荆继武,张世聪,王平建. 门限密码技术及其标准化进展. 密码学报(中英文). 2024(01): 227-254 .
    6. 高文娟. 移动电子签名认证服务在医院信息化的应用. 电脑知识与技术. 2024(21): 83-85 .
    7. 韩庆迪,陆思奇. 基于SOTP加密保护签名私钥的SM2签名方案. 密码学报(中英文). 2024(05): 991-1002 .
    8. 包子健,何德彪,彭聪,罗敏,黄欣沂. 基于SM2数字签名算法的可否认环签名. 密码学报. 2023(02): 264-275 .
    9. 文嘉明,王后珍,刘金会,张焕国. Aitps:基于非对称模格问题的两方协同签名方案. 计算机研究与发展. 2023(09): 2137-2151 . 本站查看
    10. 蔡昭炜,刘从军,刘超. 基于SM2的不动产柜面无纸化签署系统设计与实现. 智能计算机与应用. 2023(09): 122-128 .
    11. 黎洪亮,金华标,庞启君,赵钊. 内嵌SM2算法的内河船机排放数据加密通信装置设计. 农业装备与车辆工程. 2023(10): 28-31+37 .
    12. 彭金辉,雷宗华,张志鸿. ECDSA协同签名方案设计与实现. 信息安全研究. 2023(11): 1120-1130 .
    13. 徐子钧,刘建伟,李耕. 面向5G mMTC的网络切片安全研究. 网络与信息安全学报. 2022(01): 95-105 .
    14. 苏簪铀,马振华,王志洋. 基于协同签名的电网移动GIS签名系统的设计与实现. 农村电气化. 2022(04): 50-53 .
    15. 赵秀凤,付雨. Aigis-sig方案的门限数字签名协议研究. 密码学报. 2022(05): 872-882 .
    16. 白雪,秦宝东,郭瑞,郑东. 基于SM2的两方协作盲签名协议. 网络与信息安全学报. 2022(06): 39-51 .
    17. 杨伊,何德彪,文义红,罗敏. 密钥管理服务系统下的多方协同SM4加/解密方案. 信息网络安全. 2021(08): 17-25 .
    18. 彭聪,罗敏,何德彪,黄欣沂. 基于SM2数字签名算法的适配器签名方案. 计算机研究与发展. 2021(10): 2278-2286 . 本站查看

    Other cited types(7)

Catalog

    Article views (3632) PDF downloads (2220) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return