• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Tieyuan, Chen Wei, Chang Liang, Gu Tianlong. Research Advances in the Knowledge Tracing Based on Deep Learning[J]. Journal of Computer Research and Development, 2022, 59(1): 81-104. DOI: 10.7544/issn1000-1239.20200848
Citation: Liu Tieyuan, Chen Wei, Chang Liang, Gu Tianlong. Research Advances in the Knowledge Tracing Based on Deep Learning[J]. Journal of Computer Research and Development, 2022, 59(1): 81-104. DOI: 10.7544/issn1000-1239.20200848

Research Advances in the Knowledge Tracing Based on Deep Learning

Funds: This work was supported by the National Natural Science Foundation of China (U1811264, 61966009), the Project of
More Information
  • Published Date: December 31, 2021
  • Knowledge tracing is an important research direction in the field of educational data mining. The goal is to determine the degree of students mastery of knowledge by establishing a model of students knowledge changes over time and to mine potential learning rules from their learning trajectories. Fulfilling this goal means personalized guidance to students from the achievement of assisted education through artificial intelligence. Due to its powerful feature extraction capabilities, deep learning has been proven to significantly improve the performance of knowledge tracing models and has attracted more and more attention. Starting from the most basic deep knowledge tracing model, this paper comprehensively reviews the research progress in this field and provides both the technical improvement and an evolutionary map. The 3 main technical improvement directions have been elaborated and compared: 1) improvement of interpretable problems, 2) problems of long-term dependence, and 3) improvement for lack of learning features. At the same time, the existing models in the field have been classified, the public data sets have been sorted out, and the main areas of application are investigated for researchers. Finally, the future research direction of knowledge tracing based on deep learning is explored.
  • Related Articles

    [1]Wei Zishu, Han Yue, Liu Sihao, Zhang Shengyu, Wu Fei. Lookahead Analysis and Discussion of Research Hotspots in Artificial Intelligence from 2021 to 2023[J]. Journal of Computer Research and Development, 2024, 61(5): 1261-1275. DOI: 10.7544/issn1000-1239.202440063
    [2]Liu Qixu, Liu Jiaxi, Jin Ze, Liu Xinyu, Xiao Juxin, Chen Yanhui, Zhu Hongwen, Tan Yaokang. Survey of Artificial Intelligence Based IoT Malware Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2234-2254. DOI: 10.7544/issn1000-1239.202330450
    [3]Zhang Xiaoyu, Li Dongdong, Ren Pengjie, Chen Zhumin, Ma Jun, Ren Zhaochun. Memory Networks Based Knowledge-Aware Medical Dialogue Generation[J]. Journal of Computer Research and Development, 2022, 59(12): 2889-2900. DOI: 10.7544/issn1000-1239.20210851
    [4]Sun Jianwen, Zhou Jianpeng, Liu Sannüya, He Feijuan, Tang Yun. Hierarchical Attention Network Based Interpretable Knowledge Tracing[J]. Journal of Computer Research and Development, 2021, 58(12): 2630-2644. DOI: 10.7544/issn1000-1239.2021.20210997
    [5]Hu Xuegang, Liu Fei, Bu Chenyang. Research Advances on Knowledge Tracing Models in Educational Big Data[J]. Journal of Computer Research and Development, 2020, 57(12): 2523-2546. DOI: 10.7544/issn1000-1239.2020.20190767
    [6]Liu Qixu, Liu Xinyu, Luo Cheng, Wang Junnan, Chen Langping, Liu Jiaxi. Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network[J]. Journal of Computer Research and Development, 2020, 57(11): 2294-2311. DOI: 10.7544/issn1000-1239.2020.20200459
    [7]Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606
    [8]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [9]Zhang Xiangwen, Lu Ziyao, Yang Jing, Lin Qian, Lu Yu, Wang Hongji, Su Jinsong. Weighted Lattice Based Recurrent Neural Networks for Sentence Semantic Representation Modeling[J]. Journal of Computer Research and Development, 2019, 56(4): 854-865. DOI: 10.7544/issn1000-1239.2019.20170917
    [10]Huang Hua, Luo Siwei, Liu Yunhui, and Li Aijun. Knowledge Increase Ability of Artificial Neural Network[J]. Journal of Computer Research and Development, 2005, 42(2): 224-229.
  • Cited by

    Periodical cited type(28)

    1. 张凯,张慧玲,王泽琛,王雪,方洋洋. 知识点表征强化的知识追踪模型. 计算机应用研究. 2025(01): 86-92 .
    2. 贾瑞,董永权,刘源,陈成. 知识点相关性与遗忘程度融合的深度知识追踪模型. 计算机研究与发展. 2025(02): 364-373 . 本站查看
    3. 李昆泽,张宇. 自适应的流水线式无监督问题生成方法. 计算机研究与发展. 2025(04): 905-914 . 本站查看
    4. 贺步贵,董永权,贾瑞,金家永. 基于多行为特征嵌入记忆网络的知识追踪模型. 太原理工大学学报. 2024(01): 184-194 .
    5. 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪. 山东大学学报(工学版). 2024(01): 100-108 .
    6. 张凯,付姿姿,纪涛. 习题内外表示异质融合的知识追踪模型. 计算机应用研究. 2024(03): 764-771 .
    7. 赵琰,马慧芳,王文涛,童海斌,贺相春. 可靠响应表示增强的知识追踪方法. 计算机工程与科学. 2024(03): 535-544 .
    8. 杨长虓. 用于加速预训练知识追踪模型的深层特征提取器. 智能计算机与应用. 2024(04): 173-176 .
    9. 张凯,方洋洋. 知识追踪驱动的智能导学系统设计与实现. 电脑知识与技术. 2024(12): 31-34 .
    10. 陈成,董永权,贾瑞,刘源. FKA-DKT:融合知识与能力的深度知识追踪模型. 南京师大学报(自然科学版). 2024(02): 129-139 .
    11. 刘革平,冉文妍,杨瑜颖,胡翰林. VR环境下认知追踪关键技术综述. 人工智能科学与工程. 2024(02): 1-17 .
    12. 王晓勇,胡胜利. 基于改进SMOTE算法和Ensemble模型的学习结果预测方法. 中北大学学报(自然科学版). 2024(03): 257-264 .
    13. 王晓兰,马泽娟,王惠中. 基于深度学习的电机故障诊断. 计算机与数字工程. 2024(05): 1536-1540 .
    14. 张凯,刘月,覃正楚,秦心怡. 迁移表征的知识追踪模型. 智能系统学报. 2024(04): 974-982 .
    15. 许嘉,唐嵘蓉,吕品,王宁. 基于学习迁移的稳定知识追踪模型. 华南师范大学学报(自然科学版). 2024(04): 68-79 .
    16. 冯余佳,孙厚举,余德. 基于学习者画像的个性化资源推荐系统研究. 电脑知识与技术. 2024(31): 12-14 .
    17. 程璐. 智慧煤矿下的设备故障诊断. 电子技术与软件工程. 2023(02): 77-80 .
    18. 苏庆,陈佳欣,黄鸿林,黄佃宽,何楚明. 基于深度知识追踪的个性化推荐编程实训系统建设与教学实践. 实验技术与管理. 2023(03): 206-211 .
    19. 张凯,秦心怡,况莹,覃正楚. 知识状态神经推理的知识追踪模型. 计算机应用研究. 2023(06): 1686-1691 .
    20. 李强,王彬彬,陈磊,冯辉. 基于认知诊断的两阶段试题推荐方法. 电脑知识与技术. 2023(13): 25-28 .
    21. 郭艺,何廷年,李爱斌,毛君宇. 融合GA-CART和Deep-IRT的知识追踪模型. 计算机工程与科学. 2023(09): 1691-1700 .
    22. 王全蕊,任建京,韩菲,谢鹏超,钦佳燕. 大数据视域下思政课教育教学过程中的深度学习知识追踪研究. 互联网周刊. 2023(20): 27-29 .
    23. 肖杨,冯军,钱亚冠,孙雨璐,毕云杉. 融合GRU和注意力机制的知识追踪优化模型研究. 浙江科技学院学报. 2023(05): 395-401+411 .
    24. 张凯,纪涛,况莹. 融合状态关系的知识追踪模型. 计算机应用研究. 2023(12): 3621-3627+3635 .
    25. 李浩君,方璇,戴海容. 基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型. 计算机应用研究. 2022(03): 732-738 .
    26. 许嘉,韦婷婷,于戈,黄欣悦,吕品. 题目难度评估方法研究综述. 计算机科学与探索. 2022(04): 734-759 .
    27. 张凯,刘月,覃正楚,秦心怡. 概念表示增强的知识追踪模型. 计算机应用研究. 2022(11): 3309-3314 .
    28. 黄彩蝶,王昕萍,陈良育,刘勇. 基于堆叠门控循环单元残差网络的知识追踪模型研究. 华东师范大学学报(自然科学版). 2022(06): 68-78 .

    Other cited types(44)

Catalog

    Article views (2314) PDF downloads (1196) Cited by(72)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return