• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Fengying, Shen Huiqiang, Dong Rongsheng. Compact Representation of Temporal Graphs Based on kd-MDD[J]. Journal of Computer Research and Development, 2022, 59(6): 1286-1296. DOI: 10.7544/issn1000-1239.20200856
Citation: Li Fengying, Shen Huiqiang, Dong Rongsheng. Compact Representation of Temporal Graphs Based on kd-MDD[J]. Journal of Computer Research and Development, 2022, 59(6): 1286-1296. DOI: 10.7544/issn1000-1239.20200856

Compact Representation of Temporal Graphs Based on kd-MDD

Funds: This work was supported by the National Natural Science Foundation of China (62062029, 61762024) and Guangxi Natural Science Foundation (2017GXNSFDA198050).
More Information
  • Published Date: May 31, 2022
  • Temporal graphs represent vertices and binary relations that change with time. Compact representation and efficient operation of large-scale temporal graphs are the basis of analyzing and processing temporal graph data. In this paper, a novel representation of temporal graph data based on decision diagram, namely kd-MDD, is proposed. kd-MDD improves upon the kd-tree and can deal with unclustered data with a good use of space. Firstly, the adjacency matrix of time temporal graph is divided into kd. Then, a large number of the same sub matrices, that is the homogeneous subtrees in kd--tree representation of graph, are merged by introducing MDD. The storage structure is more compact. The initialization of kd--MDD and the basic operation of temporal graph (retrieving active direct/reverse neighbors of a vertex, checking whether an edge is active, adding (deleting) an edge, etc.) based on kd--MDD are provided. Experiments implemented on real temporal graph data (Flickr-growth, YouTube-growth, Wikipedia etc.) show that the number of nodes in the kd--MDD structure is only 1.58%~4.65% of the number of nodes in the kd--tree, 11.13%~20.39% of the number of nodes in the ckd--tree (compressed kd-tree) and 23.17%~41.95% of the number of nodes in the bckd--tree (bucket ckd--tree). The kd--MDD structure is an effective and unified methodology for the representation and operation of large-scale temporal graphs.
  • Related Articles

    [1]Deng Qingyong, Zuo Qinghua, Li Zhetao, Wang En, Guo Bin. Privacy-Preserving Bilateral Reputation Evaluation in Blockchain Based Crowdsensing[J]. Journal of Computer Research and Development, 2024, 61(11): 2681-2692. DOI: 10.7544/issn1000-1239.202440302
    [2]Lu Feng, Li Wei, Gu Lin, Liu Shuai, Wang Runheng, Ren Yufei, Dai Xiaohai, Liao Xiaofei, Jin Hai. Selection of Reputable Medical Participants Based on an Iterative Collaborative Learning Framework[J]. Journal of Computer Research and Development, 2024, 61(9): 2347-2363. DOI: 10.7544/issn1000-1239.202330270
    [3]Hu Jianli, Zhou Bin, Wu Quanyuan, Li Xiaohua. A Reputation Based Attack-Resistant Distributed Trust Management Model for P2P Networks[J]. Journal of Computer Research and Development, 2011, 48(12): 2235-2241.
    [4]Ma Shouming, Wang Ruchuan, Ye Ning. Secure Data Aggregation Algorithm Based on Reputations Set Pair Analysis in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2011, 48(9): 1652-1658.
    [5]Feng Jingyu, Zhang Yuqing, Chen Shenlong, Fu Anmin. GoodRep Attack and Defense in P2P Reputation Systems[J]. Journal of Computer Research and Development, 2011, 48(8): 1473-1480.
    [6]Zhao Xiang, Huang Houkuan, Dong Xingye, and He Lijian. A Trust and Reputation System Model for Open Multi-Agent System[J]. Journal of Computer Research and Development, 2009, 46(9): 1480-1487.
    [7]Luo Junhai and Fan Mingyu. Research on Trust Model Based on Game Theory in Mobile Ad-Hoc Networks[J]. Journal of Computer Research and Development, 2008, 45(10): 1704-1710.
    [8]He Lijian, Huang Houkuan, Zhang Wei. A Survey of Trust and Reputation Systems in Multi Agent Systems[J]. Journal of Computer Research and Development, 2008, 45(7).
    [9]Jin Yu, Gu Zhimin, and Ban Zhijie. A New Reputation Management Mechanism Based on Bi-Ratings in Peer-to-Peer Systems[J]. Journal of Computer Research and Development, 2008, 45(6).
    [10]Chen Feifei and Gui Xiaolin. Research on Dynamic Trust-Level Evaluation Mechanism Based on Machine Learning[J]. Journal of Computer Research and Development, 2007, 44(2): 223-229.
  • Cited by

    Periodical cited type(24)

    1. 许炜,李卓卓,方向阳. 多向度的数据分类分级:目标、逻辑与路径. 图书情报工作. 2025(01): 68-79 .
    2. 刘怀骏,徐劲松. 基于区块链和代理重加密的快递出海数据共享方案. 物流科技. 2025(03): 82-86 .
    3. 白久君,陈雪波,李大明,刘锐. 构建数字化未来:算网融合的战略应用与研究. 广播电视网络. 2025(02): 28-31 .
    4. 任静,李筱永,梁恒瑜,赵依凡,吴佼玥. 脑科学视角下经颅磁刺激治疗精神障碍的法律问题及对策研究. 中国全科医学. 2024(08): 1015-1020 .
    5. 薛俊伟,吴凯,周静. 耳机式物联网血氧监护系统的设计. 中国医学物理学杂志. 2024(01): 60-65 .
    6. 杨斌,王正阳,程梓航,赵慧英,王鑫,管宇,程新洲. 基于扩散模型生成数据重构的客户流失预测. 计算机研究与发展. 2024(02): 324-337 . 本站查看
    7. 李敏,肖迪,陈律君. 兼顾通信效率与效用的自适应高斯差分隐私个性化联邦学习. 计算机学报. 2024(04): 924-946 .
    8. 刘立. 大数据技术在中职计算机教学应用初探. 科技风. 2024(12): 64-66+167 .
    9. 孔庆苹. 大数据环境下物联网设备数据隐私保护研究. 无线互联科技. 2024(07): 116-118 .
    10. 徐帅. 数据隐私保护与法律责任:新形势下的挑战与应对. 法制博览. 2024(14): 95-97 .
    11. 张海霞. 安全路由协议综合交互信任评价及性能分析. 山西电子技术. 2024(03): 69-70+90 .
    12. 张世涛,祁舒慧. 社交媒体数据分析在市场审计中的运用. 赤峰学院学报(自然科学版). 2024(07): 30-32 .
    13. 张国业,郎雅婧. 科技支撑区域工业治理能力提升路向选择及发展布局. 现代工业经济和信息化. 2024(10): 246-248 .
    14. 李卓卓,刘子轶. 从分野到融合:多学科视角下的数据跨境研究综述. 情报杂志. 2024(12): 198-207 .
    15. 蒋雷,朱婷婷,汤海林. 大数据背景下塑料加工行业的数据安全与隐私保护. 塑料助剂. 2024(06): 78-82 .
    16. 苗权,张弛,房硕,刘季平. 我国数据跨境流动管理的创新实践和思考. 互联网天地. 2023(03): 49-52 .
    17. 冯凡. 大数据分析技术下的隐私保护. 数字通信世界. 2023(03): 142-145 .
    18. 赵静. 基于区块链技术及数据挖掘技术推进数字经济发展. 科技资讯. 2023(15): 36-39 .
    19. 王鹏涛,徐润婕. AIGC介入知识生产下学术出版信任机制的重构研究. 图书情报知识. 2023(05): 87-96 .
    20. 赵尔波,苏玉成,黄少远. 医院部署GCP远程监查的多级安全防护设计与实践. 中国卫生信息管理杂志. 2023(05): 709-714 .
    21. 张铠,汪希,黄晋. 基于混沌技术的多域物联网敏感数据安全传输方法. 信息与电脑(理论版). 2023(16): 232-234 .
    22. 王大阜,王静,石宇凯,邓志文,贾志勇. 基于深度迁移学习的图像隐私目标检测研究. 图学学报. 2023(06): 1112-1120 .
    23. 郭赟赟,于浩. 突破语言障碍:ChatGPT在多语言教育中的作用与影响. 郑州师范教育. 2023(06): 48-53 .
    24. 姚莉娟,廖冬琴. 基于隐私保护的高校大数据挖掘平台设计. 无线互联科技. 2023(23): 50-54 .

    Other cited types(28)

Catalog

    Article views (113) PDF downloads (64) Cited by(52)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return